Research areas for projects / master thesis

Responsible professor at DTU, 2. year University:

Name	Research area
Poul Erik Morthorst,	System Integration of wind power, Energy Markets, Energy Policies
Management Engineering, DTU	
Jens Nørkær Sørensen	Wind turbine technology, wind turbine design, Aerodynamics and Aero-
Wind Energy, DTU	acoustics, Non-linear Fluid Dynamics
Henrik Klinge Jacobsen	Power markets and wind, support instruments for wind Systems
Management Engineering, DTU	integration of wind power,
Klaus Skytte, DTU	Integration of renewable energy, support schemes, policy instruments, power market regulation
Marie Münster, DTU	Energy planning and renewable energy technologies. national energy
	modeling (Balmorel, EnergyPLAN, STREAM) with focus on Waste-to-
	Energy technologies producing heat, power and transport fuels and on
	analyses of the role of district heating in future energy systems
Pierre Pinson	Mathematical modeling and decision-making methods in the energy
Electrical Engineering, DTU	sector, large scale integration of renewable energies into power systems
	and electricity markets, stochastic process modeling, forecasting,
	optimization and decision-making subject to uncertainty
Gregor Giebel	Short-term forecasting of wind power, large-scale integration of wind
Wind Energy, DTU	power into electricity grids, and condition monitoring for wind turbines
	including standardisation within the IEC.
Niels Erik Clausen	Public acceptance of wind energy, System integration of wind power,
Wind Energy, DTU	wind power in cold climate
Joakim Holbøll	Electrical components, lightning prevention, superconducting electrical
Electrical engineering, DTU	machines, measurement techniques, generator technology
Anca D. Hansen	Grid integration, ancillary services, IEC standards, Integration of
Wind Energy, DTU	renewable energy
Nicolaos Antonio Cutululis	Control of wind power plants, HVDC systems, ancillary services,
Wind Energy, DTU	integration of large scale wind power

Co-supervisor at NTNU, 1st Year University

Electric power systems

Name	Research area
Prof. Kjetil Uhlen	Research within the fields of power system dynamics, operation and control. Interests are especially focused towards development of applications based on phasor measurements (PMUs) for monitoring and control purposes, and challenges related to large scale integration of RES in interconnected and isolated systems. Head of the Power Systems group at the department.
Prof. Magnus Korpås	Research within the fields of Energy Planning and Power Markets. Interests are especially focused towards integration of renewable energy in the energy system
Prof. Elisabetta Tedeschi	Power electronics for HVDC and HVAC transmission systems (including MMCs), offshore grids and isolated systems, wave energy converters, large scale (offshore) wind integration, control systems, etc

Hydro power scheduling, Power system analysis – methods and algorithms,
Integration and coordination of intermittent energy sources
Reliability and Risk – based Power System Operation and Planning Practices,
Probabilistic Methods Applied to Power System Analysis, Reliability – based
Appraisal of Smart Grid Challenges and Realisation.
Power system stability and control, Offshore wind energy integration, power
system dynamic modeling and analysis, etc.
Power system stability and control, Offshore wind energy integration, power
system dynamic modeling and analysis, etc.
Transmission and distribution system analysis, quality of supply in power systems
(reliability, power quality), Smart-grids, microgrids, technical- economical planning of power system, power system standardization, economical regulation and benchmarking of grid monopolies, powert system ICT. Project manager National Smart Grid lab, Scientfic manager The Norwegian Smartgrid Centre, Scientific Manager Centre for Intelligent Electricity Distribution - CINELDI

Electric power technology

Name	Research area
Prof. Hans Kristian	Power system transients, stress analysis, power system protection. Project
Høidalen	leader of ProSmart. Group leader of Power Technology
Prof. Erling Ildstad	High voltage insulation, cable technology, diagnostic testing and condition
	assessment
Prof. Kaveh Niayesh	Current interruption and limitation in power grids, circuit breaker and switchgear
	technology, power system transients, condition assessment of high voltage
	apparatus, gaseous and vacuum discharges, high current and high voltage testing
	methods, pulsed power technology.
Prof. Robert Nilssen	Field calculation, design of electrical machines and other power
	components. Design optimization. Numerical modelling of
	electromagnetic fields using FEM.
Prof. Arne Nysveen	Analysis and design om electromagnetic power equipment and installations.
	Numerical analysis using finite elements. Applications focused on hydropower
	equipment and subsea installations. Responsible for research on generators and
	turbines in FME HydroCen
Associate professor	Light and lighting, Low voltage installations, Intelligent Building
Eilif Hugo Hansen	Installations, Intelligent Street Lighting, Lighting in Fish Farming
Associate professor	High voltage insulation technique for energy efficient and environmental friendly
Frank Mauseth	electric power transfer and distribution. Important topics are modelling and
	experimental testing of design criteria associated with ageing mechanisms and
	electric withstand strength of different high voltage insulation materials.
Associate professor	Power electronics, design of power electronic converters, wide bandgap power
Dimosthenis Peftitsis	semiconductors (e.g. SiC and GaN), gate and base drivers design, hybrid and
	solid-state DC breakers, high-efficiency design of power electronics, high-
	temperature design, reliability of power electronics.
Adjunct associate	Risk based asset management, cost-benefit analysis of maintenance and
prof.	reinvestments, methods and tools for estimation of remaining useful life, failure
Eivind Solvang	probability and technical-economic risk based on the technical condition of
	components, distribution system planning
Prof. Irina	Protection in power systems
Oleinikova	
A	
Associate	power electronics application to power system, distributed generation, renewable
professor	energy integration, HVDC transmission, FACTS, microgrid, smart grids, hybrid or
Mohammad	fully electric vehicles, robust control theory for power electronics system, process
Amin	control, and embedded systems.
Associate	sustainable energy systems - this includes electric car and other zero emission
professor Steve	cars, energy storage, energy markets, energy system analysis, smart grids, solar
Völler	energy, wind energy