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What is a solar cell?

• It is a device that converts the energy of the sunlight 

directly into electricity.
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How does a solar cell work?
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How does a solar cell work?
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How does a solar cell work?

- Charge generation (electron-hole pairs)

- Charge separation (electric field)

- Charge transport
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- Charge separation (electric field)

- Charge transport
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8 - Charge generation (electron-hole pairs)

- Charge separation (electric field)

- Charge transport
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9 - Charge generation (electron-hole pairs)

- Charge separation (electric field)

- Charge transport

Back and front side of a silicon solar cell
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Semiconductors

Materials for solar cells



11

Why Silicon?

Silicon: abundant, cheap, well-known technology
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Silicon solar cell value chain
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Silicon solar cells value chain

Photo: Melinda Gaal
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Multicrystalline silicon solar cells

Directional solidification
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Monocrystalline silicon solar cells

Czochralski process
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Crystallization methods for PV silicon

• Multicrystalline silicon ingots: 

– Lower cost than monocrystalline

– More defects (dislocations and impurities)

• Monocrystalline silicon ingots: 

– Higher cost and lower yield

– Oxygen related defects

– Structure loss
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Czochralski PV single crystal growth

• Dominating process for single crystals

• Both p (B-doped) and n (P-doped) type crystals

• Growth rate 60 mm/h

Challenges:
•Productivity

low due to slow growth, long cycle time...

•Defects

point defects: vacancies, interstitials, oxygen defects

•Segregation

kB=0.8 (for p-type); kP=0.35 (for n-type)

•Oxygen

Contamination from SiO2 crucible
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Continuous feeding in Czochralski growth 

•Increase of productivity

-no need to cool down & recharge

•Adjust composition during growth

-compensate for segregation

-crystal of uniform composition
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Point defects during Czochralski growth

Sketch of grown-in microdefects distribution

in an axial section of a Cz ingot

V/G low:

interstitials

V/G high: 

vacancies

PV monocrystals are grown at high 

rates in vacancy mode but starts

in interstitial mode. Defect zone durig

transition.

* Y. Hu, PhD Thesis at NTNU, 2012
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Directional solidification 

Bridgman / Vertical Gradient Freeze (VGF)

• Dominating process for PV

• Multicrystalline ingots

• Bach size, trend towards larger ingots >800 kg

• Growth rate > 60 mm/h

• Defects deteriorate properties

– Structural (grain boundaries, dislocations…)

– Impurities
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Reduce cost

•Directional solidification, VGF

•Bridge gap between multi-

and mono

•New Si materials

•Less pure

•Doping elements, B, P

•Light elements, O, C, N

•Metals, Fe, Cr, Cu, Ti

Improve efficiency
•Control structure

•Grain size, orientation

•Defect structure,

•Dislocations, grain boundaries

•Control impurities

PV installation growth
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Metal contamination

Solid state difusion of iron from crucible into ingot

Low lifetime ”red zone”

125 

mm

10

0 m

m

C/C_

cr

1E+10

1E+11

1E+12

1E+13

1E+14

1E+15

1E+16

0,0 50,0 100,0

cm
-3

Distance from edge [mm]

total iron

interstitial iron

Ref crucible

HP crucible

Ref crucible with 
silica coating

* T. Nærland, PiP, 2009

* Y. Boulfrad, PhD Thesis, 2012



24

Reusable Si3N4 crucibles for oxygen control
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• Nitride crucibles  allow

low oxygen levels

• Can be reused several 

times (>5)
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Dislocation structures in mc Si

•Form during solidification, cooling and deformation

•Often associated with grain boundaries

•Interact with impurities

•Prevents gettering

•Depend on crystal orientation

•Increase with fraction solid

Si3N4 (B) and SiC (A) melt precipitates
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Larger grains but lower cost and higher yield than CZ process

- A seed-structure consisting of six equally oriented <110>-seeds

- Grown in a pilot-scale Crystalox furnace, 12 kg

Seed-assisted growth

Mono-like silicon ingots 

*K. E. Ekstrøm et al, CSSC7, 2013
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Low level of defects

Seed-assisted growth 

*K. E. Ekstrøm et al, CSSC7, 2013

• Lifetime maps before and after gettering

• Dislocations develop at seed-interfaces and also depend 

on seed misorientation
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Task Title Activities

1 SiSim software Software framework, releases, manuals, pre and post, 

user courses.

2 SiSim numerical methods Implementation of numerical methods

3 Global furnace modelling Furnace modelling (multi, mono) validation

4 Impurity transport and defect

formation

Modelling impurity transport phenomena, 

thermodynamics and particle formation, defect 

formation

5 Mechanical modelling Stresses and deformation in furnace components, 

elastic and plastic deformation, crystal plasticity

6 Electromagnetism Electromagnetic field, coupling with fluid flow and 

consequences

DEVELOPMENT OF NEW MODELING SOFTWARE SiSim
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Cyberstar furnace: fluid and gas flows 

Gas flow

Melt flow



30

Cyberstar furnace: Stresses and strains 

Thermo-elastic stresses
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Crystallox furnace: impurities 

Heat transfer

EM forces

Boron

[C/C0]

With EM Without EM

Gas/melt flow
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Cost for production of solar modules
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Silicon solar cells production

What happens to the wafer?

Courtesy Radovan Kopecek, ISC

and Erik Stensrud Marstein, IFE
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Emitter-diffusion

Anti-reflection coating (ARC)

Metal contacts/Co-firing

Edge isolation

Metal contacts/Screen printing

Silicon solar cells production

Texturing

Saw-damages removal
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Efficiency limits

= 33% 1 sun (Eg=1.4eV)

Si (Eg = 1.1 eV):  η= 31%

Theoretical limit by Shockley and Queisser, 1961

Sola cells Efficiency:

19-22%

Solar cells Efficiency:

16-19%

Typical values for commercial solar cells:
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http://pvinsights.com/

R. Kopecek, ISC, CSSC9, 2016

http://pvinsights.com/
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Global radiation on inclined surface:

120MW total installed capacity in 2016 
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Concluding Remarks

-Silicon based solar cells still dominating the marked

-Since 2016, prices are falling -> good for low cost PV but bad for PV industry

-Room for innovations (e.g. direct wafer, tandem etc) is extremely tight

-Material quality and solar cell architectures still key parameters

-Bifacility is coming! 120MW total installed capacity in 2016 and in 2017 at least 

doubled


