MS ISEE Study Track: Heat and Power Engineering, Course Table: 2018/2019

1. Year Aalto University: School of Engineering, Dept. of Mechanical Engineering, Mika Järvinen

2. Year Chalmers University of Technology: Dept. of Energy and Environment, Carl Linderholm & Tobias Mattisson

Study track focus and goal:

This track meets the challenge set global warming and depletion of fossil fuel resources by providing state-of-the-art education in advanced technologies and systems for efficient, clean and competitive conversion, distribution and use of electricity, heating and cooling.

Training is provided in the use of optimization and modelling tools for design and planning on the technical plant level, including state-of-the-art technologies, at the same time that necessary knowledge on energy systems is given in order to gain perspective.

Learning outcomes:

- Students become skilled in analysis, optimization and design of combined heat and power
 plants and industrial heat processes, acquiring also state-of-the-art knowledge on
 technologies for fuel conversion with reduced or zero CO₂ emissions (biomass and waste
 conversion, Carbon Capture and Storage technologies).
- By acquiring complementary knowledge on an energy systems level, students are trained to approach problem-solving in an interdisciplinary way.
- Students are prepared for a professional career within the energy industry and power generation companies.

Course table

1. Semester	2. Semester	3. Semester	4. Semester
Aalto University		Chalmers University of Technology	
Biofuel & bioenergy, AAE-	Combustion Technology,	Heat and Power	Thesis , 30 ECTS
E3050, 5 ECTS	EEN-E2002, 5 ECTS	Systems Engineering,	
		MEN120, 7.5 ECTS	
Energy Markets, EEN-	Advances in New Energy	Industrial Energy	
E3006, 5 ECTS	Technologies, PHYS-	Systems, KVM013,	
	E0483, 5 ECTS	7.5 ECTS	
Energy, Environment	Exercises in Energy		
and Emission Control,	Technology, EN-E3005,		
EEN-E2007, 5 ECTS	5 ECTS		
	Energy and		
	Environmental		
	Economics, 31E01310, 5		
	ECTS		
	District heating and		
	cooling, EEN-E3004, 5		
	ECTS		
Elective courses from list	Elective courses from list	Elective courses from	
1	2	list 3	
= 25 ECTC	= 35 ECTS	= 30 ECTS	= 30 ECTS

Elective course list 1

- AAE-E1000 Introduction to Advanced Energy Solutions (5 ECTS)
- AAE-E3000 Advanced Energy Project (10 ECTS) (I-II)
- PHYS-E6572 Advanced Wind Power Technology (5 ECTS) (alternate years, not lectured autumn 2015)
- PHYS-C6370 Fundamentals of New Energy Sources (5 ECTS)

Elective course list 2

- PHYS-E6570 Solar Energy Engineering (5 ECTS) (alternate years, lectured in spring 2016)
- EEN-E2001 Computational Fluid Dynamics (5 ECTS)
- PHYS-C1380 Multi-disciplinary energy perspectives (5 ECTS)
- CHEM-E5145 Materials for Renewable Energy P (5 ECTS)

Elective course list 3

- Sustainable Electric Power Systems, ENM125, 7.5 ECTS
- Turbomachinery, TME210, 7.5 ECTS
- Sustainable Energy Futures , FFR170, 7.5 ECTS
- Computational fluid dynamics (CFD), MTF072, 7.5 ECTS
- Multiphase flow, TME160, 7.5 ECTS
- Gas turbine technology, MTF171, 7.5 ECTS
- Sustainable power production and transportation ENM095, 7.5 ECTS

Research areas for projects / master thesis

First and main supervisor at Chalmers University, 2nd year

Professors at Chalmers	Research area	
Prof. Tobias Mattisson, Chalmers University, Energy and	Chemical looping, gasification,	
Environment	thermodynamics	
Prof. Filip Johnsson, Chalmers University, Energy and	Fluidized bed processes	
Environment		
David Pallarès, Chalmers University, Energy and	Fluidized bed processes	
Environment		
Fredrik Norrmann	Oxyfuel combustion, flue gas treatment	
Mathias Gourdon	Optimization of industrial energy use	
Magnus Rydén	Chemical looping combustion	

Co-supervisors for master thesis supervision at Aalto University (i.e. 1st year university)

Professors at Aalto	Research area	
prof. Mika Järvinen, Aalto University, department of	Combustion and gasification, fuel	
Mechanical Engineering	spraying and modeling	
prof. Martti Larmi, Aalto University, department of	Biofuel production and combustion	
Mechanical Engineering		
prof. Risto Lahdelma, Aalto University, department of	Energy: Modeling, simulation and	
Mechanical Engineering	optimization	
Prof. Sanna Syri, Aalto University, department of	Energy market, Societal and economic	
Mechanical Engineering	impact of energy technologies	
Prof. Ville Vuorinen, Aalto University, department of	Computational fluid dynamics,	
Mechanical Engineering	Mathematical modelling, Combustion	

Degree requirements for admission process

A BSc degree corresponding to a minimum of 180 ECTS credits in the following fields: Mechanical Engineering, Chemical Engineering, Chemistry and Physics.

Applicants must document that they have fulfilled the following minimum requirements: The applicant's qualifications must include a strong working knowledge of mathematics and energy/thermal engineering. Applicants must document that they have fulfilled the following minimum requirements:

• Mathematics: 21.5 ECTS including linear algebra, calculus and differential equations

Thermodynamics: 6 ECTS

Mass and/or heat transfer: 6 ECTSFluid mechanics: min. 5 ECTS