The Influence of Language on Spatial Memory

HARMEN B. GUDDDE, KENNY R. COVENTRY, & PAUL E. ENGELHARDT

SCHOOL OF PSYCHOLOGY, UNIVERSITY OF EAST ANGLIA

Introduction
Research shows that language affects non-linguistic processing (Loewenstein & Gentner, 2005; Feist & Gentner, 2007). However, it is not yet known how language does this. We examined the effect of language at encoding on memory for object location. In three different studies, the use of demonstratives (this/that) and possessives (my/our) was manipulated.

Participants read out instruction cards to indicate to the experimenter which object to place and where to place it (see Figure 1). We were interested in the influence of the specific term on the card on memory for object location. We aimed to tease apart two models explaining the effects of language on memory for location (see Figure 2).

Method
Participants memorized spatial locations of objects placed at locations varying in distance on a table (Coventry, Valdés, Castillo, & Guijarro-Fuentes, 2008), see Figure 1. In two different studies, object placement was combined with the use of demonstratives (this/that; N=32) or possessives (my/your; N=34). A third study was run to test a possible third variable of attention (N=16).

Figure 1: Overview of the procedure of the experiments. From left to right: The participant reads out the instruction → the object is placed and then removed to participant verbally directs the experimenter to move the indication stick to where the object was.

Results
The first experiment revealed a main effect of demonstratives. People misremember object locations as being closer when the placement is presented combined with the demonstrative “this” (M = 2.01, SD = .41) compared to “that” (M = 2.94, SD = .42) (see Figure 3). A repeated contrast test showed that “that” was misremembered significantly further than “this” and “that”, p < .05. There is also an effect for location (p = .045, partial η² = .07), but there is no interaction between demonstrative * location (p = .18, partial η² = .04).

The second experiment showed a similar effect of possessives in which objects presented with “my” (M = 8.1, SD = .34) were misremembered to be closer by than objects in the “your” (M = 1.89, SD = .43) condition, p < .05 (see Figure 4). There was an effect for location (p = .02, partial η² = .09) and an interaction effect (p = .02, partial η² = .07). There was a location effect for the “the” and “your” conditions (both p < .05), but not for the “my” condition (p = .05).

The third experiment (N=16) replicated Experiment 1 (see Figure 5). Words in the “this” condition were misremembered significantly closer than “that” and “this”, p < .05. However, no language effect on absolute fixation time was found (see Figure 6), suggesting that language does not change the time participants focused on a specific object.

Discussion
Results show the first evidence for the influence of language on memory for object location. In the three experiments demonstratives and possessives had effects on spatial memory, in which objects in the this/my conditions were misremembered to be closer compared to the that/your conditions.

Results from all three Experiments showed that language affects memory for object location. However, the interaction effect that would be predicted by the congruence account was not found. Also, the results of Experiment 3 showed no difference in attention time in different language conditions. Overall the results support the expectation model.

References:

Acknowledgements
This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 316748. University of East Anglia, Lawrence Stenhouse Building, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom