

MARITIME ACADEMY

(Future) Fuels & Fuel Converters

Navigator

Fuel types

Natural gas

Fuel cells

Quiz

What is a "fuel"?

Fuel: Substance

• chemical reaction

oxidizer

heat

which in with an

(typically oxygen) releases

Carbon-based fuels

Most fuels contain carbon-hydrogen compounds

Longer chains:

- heavier fuel
- more **viscous** fuel
- lower calorific value
- **higher temperature** to evaporate

Fuels – come in different forms

Fuels may be

- solid
- liquid
- gaseous

Fossil vs Renewable

Fuels may be

fossil

coal

petroleum-crude derived

natural gas

OR

renewable

wood

refuse

agricultural residues

bio fuels

Case Study – Fuel & Energy

Rank fuels in energy obtained when 1 g of the fuel is burnt

- alcohol (C_2H_5OH)

- butane gas (C_4H_{10})

solid carbon(C)

- glucose sugar $(C_6H_{12}O_6)$

hydrogen gas (H₂)

Place 5

Place 4

Bronze

Fuels & Fuel Converters

Rev. 3.0

Silver

Fuels & Fuel Converters

11 © DNV GL Rev. 3.0

Gold

Fuels & Fuel Converters

12 © DNV GL Rev. 3.0

Sugar	18 kJ/g	
Alcohol	30 kJ/g	
Coal	30 kJ/g	
HFO	41 kJ/g	Heavy Fuel Oil
MDO	44 kJ/g	Marine Diesel Oil
MGO	45 kJ/g	Marine Gas Oil
Butane	50 kJ/g	main component of LPG
Carbon	53 kJ/g	
Hydrogen	143 kJ/g	good for storing energy (e.g. from wind)

LPG = Liquid Petroleum Gas

Fuels & Fuel Converters

Rev. 3.0

13 © DNV GL

Marine fuels in use

MGO (Marine Gas Oil)	roughly equivalent to No. 2 fuel oil
	made from distillate only
MDO (Marine Diesel Oil)	blend of gasoil and heavy fuel oil
IFO (Intermediate Fuel Oil)	blend of gasoil and heavy fuel oil
	(less gasoil than MDO)
MFO (Medium Fuel Oil)	blend of gasoil and heavy fuel oil
	(even less gasoil than IFO)
HFO (Heavy Fuel Oil)	(nearly) pure residual oil
	roughly equivalent to No. 6 fuel oil

Common fuels

Viscosity of fuels (ordered by increasing price):

```
- IFO 380
- IFO 180
                intermediate fuel oil with v \le 180 cSt
- LS 380
                low-sulphur (<1.5%) IFO with v \le 380 cSt
- LS 180
                low-sulphur (<1.5%) IFO with v \le 180 \text{ cSt}
                                           < 30 cSt at 50°C
- MDO
                Marine diesel oil
```

intermediate fuel oil with $v \le 380$ cSt.

- MGO Marine gas oil < 6 cSt at 40°C

Viscosity

Kinematic viscosity:

$$v = \frac{\mu}{\rho}$$

 $\mu = \text{dynamic viscosity } [Pa \cdot s]$

 ρ = density [kg/m³]

 $v = kinematic viscosity [m^2/s]$

1 stokes [St] = $1 \text{ cm}^2/\text{s} = 0.0001 \text{ m}^2/\text{s}$ 1 centistokes [cSt] = $1 \text{ mm}^2/\text{s} = 10^{-6} \text{ m}^2/\text{s}$

Sir George Gabriel Stokes, 1st Baronet (1819–1903)

Fuels & Fuel Converters

16 © DNV GL

Coming to terms with viscosity

1/3

milk 4.3 cSt

just like...

SAE 20 Crankcase Oil SAE 75 Gear Oil

tomato juice 220 cSt

just like...

SAE 50 Crankcase Oil SAE 90 Gear Oil

honey 2200 cSt

Questions so far?

Fuels & Fuel Converters

Navigator

Fuel types

Nat

Natural gas

Fuel cells

Quiz

What is "natural gas"?

- Composition of different gases
- Actual mix depends on gas field (and processing of gas)

What is the main component in natural gas?

What is the "usual" name of the shown substance?

(Liquefied) natural gas - Methane dominates

Typical composition in volume %

Methane 94.0 %

Ethane 4.7 %

Propane 0.8 %

Butane 0.2 %

Nitrogen 0.3 %

Density: 0.716 kg/m³ at 273 K (0°C) and ambient pressure

Liquid gas takes up much less space

Volume ratio liquid : gas (LNG) = 1:600

(1 bar, -163°C:
$$\rho = 425.0 \text{ kg/m}^3$$
)
(1 bar, 0°C: $\rho = 0.7 \text{ kg/m}^3$)

LNG vs HFO

For the storage of 1 t of LNG, you need...

- a. roughly the same...
- b. roughly twice the ...
- c. roughly five times the ...
- d. roughly ten times the ...

...volume as for 1 t of HFO?

LNG = Liquefied Natural Gas HFO = Heavy Fuel Oil

LNG vs HFO

For 1 m³ of LNG, you get

- a. roughly 10% less than the ...
- b. roughly the same ...
- c. roughly 10% more than the ...
- d. roughly 20% more than the ...

... heat for 1 m³ of HFO?

LNG = Liquefied Natural Gas HFO = Heavy Fuel Oil

LNG vs HFO

Compared to HFO, LNG decreases CO2 emissions by roughly...

- a. 10% ...
- b. 25% ...
- c. 40% ...
- d. 90% ...

... for the same work [g CO_2/MJ]

LNG = Liquefied Natural Gas HFO = Heavy Fuel Oil

Cause the fuels, they are a-changing

Over time, the "standard" (or predominant) fuel has changed

Bring the fuels (below in alphabetical order) in correct order of time from medieval times to "future"

- coal
- hydrogen
- natural gas
- oil
- wood

Sort again – by hydrogen content

All fossil fuels contain hydrogen and carbon

Bring the fuels (below in alphabetical order) in correct order of increasing hydrogen content

- coal
- hydrogen
- natural gas
- oil
- wood

Fuels have changed over time

Carbon content in fuel

Different strokes for different fuels

Engines (Energy converters) change with time (and fuel)

time

19th Century

Different strokes for different fuels

Engines (Energy converters) change with time (and fuel)

time

20th Century

Different strokes for different fuels

Engines (Energy converters) change with time (and fuel)

Questions so far?

Fuels & Fuel Converters

Navigator

Fuel types

Natural gas

Fuel cells

Quiz

Fuels & Fuel Converters

36 © DNV GL

Let's start with something similar, but much more familiar

An electro-chemical energy conversion device or simply: "battery"

- all chemicals stored inside
- converts the chemicals to electricity
- will eventually "go dead"

Also an electro-chemical energy conversion device

- Chemicals constantly flow into the cell (it never "goes dead").
- Most fuel cells use hydrogen & oxygen, producing water & electricity.

Fuel cell in action

Source: NASA

Many variations on the theme

Fuel cell types differ by:

- electrolyte (main classifier)
 - PEM (Proton Exchange Polymer)
 - PAFC (Phosphoric Acid Fuel Cell)
 - MCFC (Molten Carbonate Fuel Cell)
 - SOFC (Solid Oxide Fuel Cell)
- fuel (hydrogen, methanol, ethanol, natural gas, carbon-monoxide, ...)
- oxidant (usually oxygen)
- temperature
 - low temperature (< 100°C)
 - high temperature (600-1100°C)

Cool and fast...

Low-temperature fuel cells

- © rapid start-up
- requires hydrogen or methanol as fuel
- catalysts easily poisoned
- ⊗ low efficiency

Applications:

- portable devices
- frequent on/off cycles
- compact devices

Fuels & Fuel Converters

Hot and slow...

High-temperature fuel cells

- © fuel flexible
- © high efficiency
- ⊗ long start-up

Applications:

- stationary power
- ships

Higher efficiency than diesel engines

1838 Christian Friedrich Schönbein (Germany)
chemist
discovers principle of fuel cells
(using two platinum wires and sulphuric acid)
discovered also guncotton and ozone

Fuels & Fuel Converters

1839 Sir William Grove (UK)
lawyer & physical scientist
first working prototype
voltage ~1 V

Fuels & Fuel Converters

1932 Francis Thomas Bacon (UK)
chemical engineer
development of practical fuel cells
in 1959: 5 kW alkaline fuel cell, efficiency 60%

Fuels & Fuel Converters

1960s NASA modifies Bacon fuel cell
used to supply on-board drinking water & electricity
in Apollo missions
later also in Space Shuttle missions

12 kW 100 kg 0.15 m³

Source: NASA

1980s Fuel cells for cars
significant increase in power density over time
all major car manufacturers presented fuel cell prototypes by 2010

2006 Hamburg tests fuel cell busMercedes Benz Citaro Hybrid-Bus9 buses used in public transport

2000 U 212 and U 214 submarines (Germany) uses PEM fuel cells for air independent propulsion

PEM = Proton Exchange Membrane

50 © DNV GL

Fuel cells for tourist boats

Fuel Cell Ship (FCS) "Alsterwasser" 2008 operated as zero emission ship on lake Alster in Hamburg driven by fuel cells co-developed by Germanischer Lloyd

The propulsion system (Source: Schiffstechnik Buchloh)

Fuel cells for ships – A different scale!

Main Engine 8400 kW
Auxiliary Engine 1000 kW
Emerg. Generator
232 kW

Future technology

2030 Super ECO 2030
Concept study for large container vessel (NYK)
various technologies incl. fuel cells
(claiming 32% less CO₂ due to fuel cells alone)

Source: NYK

Mix of technologies for power supply

Source: NYK

Future technology

Zero-Emission Scandlines project (FutureShip design)
hydrogen-powered fuel cells
use excess wind power to generate hydrogen

Future technology

GL ZERO (zero-emission Feeder) 2030 Concept study of Germanischer Lloyd fuel cells + batteries (technology of 2010)

Movie time – Zero-emission feeder

Questions so far?

Fuels & Fuel Converters

Navigator

Fuel types

Natural gas

Fuel cells

Quiz: Do you know your fuel types?

What is <u>not</u> true?

Longer chains in hydro-carbons lead to...

- a. heavier fuel
- b. lower temperature to evaporate
- c. higher viscosity
- d. lower calorific value

What is <u>not</u> a fossil fuel?

- a. hydrogen
- b. coal
- c. heavy fuel oil
- d. LNG

Which fuel has the highest calorific value?

- a. alcohol
- b. butane gas
- c. coal
- d. glucose sugar

Which fuel has the highest calorific value?

- a. Heavy Fuel Oil (HFO)
- b. Marine Gas Oil (MGO)
- c. Marine Diesel Oil (MDO)
- d. Liquefied Natural Gas (LNG)

Which fuel contains the most gasoil percentage?

- a. HFO
- b. IFO
- c. MDO
- d. MFO

IFO 180 is closest in viscosity to...

- a. Milk
- b. Tomato juice
- c. Honey
- d. Tooth paste

What is the main component in natural gas?

- a. Ethane
- b. Methane
- c. Nitrogen
- d. Propane

The volume ratio between LNG and natural gas is...

- a. 1:600
- b. 1:200
- c. 1:64
- d. 1:8

LNG vs HFO

For the storage of 1 t of LNG, you need...

- a. roughly the same...
- b. roughly twice the ...
- c. roughly five times the ...
- d. roughly ten times the ...

...volume as for 1 t of HFO

LNG = Liquefied Natural Gas HFO = Heavy Fuel Oil

LNG vs HFO

For 1 m³ of LNG, you get

- roughly 10% less than the ...
- roughly the same ...
- roughly 10% more than the ...
- roughly 20% more than the ...

... heat for 1 m³ of HFO

LNG = Liquefied Natural Gas HFO = Heavy Fuel Oil

LNG vs HFO

Compared to HFO, LNG decreases CO2 emissions by roughly...

- a. 10% ...
- b. 25% ...
- c. 40% ...
- d. 90% ...

... for the same work [g CO2/MJ]

LNG = Liquefied Natural Gas HFO = Heavy Fuel Oil

Which fuel has the lowest hydrogen content?

- a. wood
- b. coal
- c. oil (HFO)
- d. natural gas

What is NOT used as fuel for fuel cells?

- a. LNG
- b. liquid hydrogen
- c. liquid oxygen
- d. methanol

Low-temperature fuel cells ...

- a. ... have slow start-up
- b. ... have high efficiency
- c. ... do not use LNG as fuel
- d. ... are bulky devices

<u>High-temperature</u> fuel cells ...

- a. ... have slow start-up
- b. ... have low efficiency
- c. ... do not use LNG as fuel
- d. ... are used on portable devices

Fuel cells generate ...

- a. ... drinking water & electricity
- b. ... heat & vibrations
- c. ... electricity & vibrations
- d. ... phosphoric acid & heat

Coffee break

Fuels & Fuel Converters

77 © DNV GL Rev. 3.0 DNV·GL