DNV·GL

VOLKER BERTRAM

Submarine Hull Design

Navigator

Overview of problems and approaches

General guidelines for submarine hull design

Quiz

Hydrodynamic Assessment

Hull-Appendages Interference

Analysis Methods for Snorkels

Quiz

Recommended reading

Recommended reading

Focus on resistance & propulsion

Main areas of ship hydrodynamics

- resistance & propulsion
- propellers
- manoeuvring
- seakeeping

Basic approaches have pros and cons

Basic approaches

empirical / statistical approaches

© fast & simple

(3) limited applicability

experimental approaches

much experience

⊗ scaling errors

numerical approaches

constraints and detailed

requires special resources

Empirical approach

- Simple (pocket calculator, excel)
- © Fast
- © Cheap

Great, like free lunch

Empirical approach - Serious drawbacks

- Cannot reflect details
- Based on statistical evaluation of yesterday's designs

Do not expect much from a free lunch

Empirical approach - Serious drawbacks

No standard series for submarines

© Extensive experiments with axisymmetric bodies

David Taylor Model Basin:

Gertler (1950)

Landweber & Gertler (1950)

Basic idea:

- perform test on scaled down model
- extract information
- scale (transform) to full-scale ship

Main uncertainty: model-to-ship correlation

- Procedure differ between model basins
 - \rightarrow incompatible data bases

Different physics ("scaling errors")

- > 100 years experience
 - resistance test (resistance, nominal wake)
 - propulsion test (thrust, torque)
 - open-water test (propeller design support)
- progress in detailed measurements
 - → Laser Doppler Velocimetry (LDV)
 - → Particle Image Velocimetry (PIV)

Source: HSVA

- General confidence in model test
- Scaling procedures well accepted

No full-scale data for submarines

Numerical approaches

CFD = Computational Fluid Dynamics

Solves flow equations using numerical techniques

"Numerical towing tank"

Source: Voith

CFD used increasingly for manoeuvring

- Force coefficient approach; coefficients determined in CFD
- Fast (real-time) simulation with given coefficients

Hydrodynamic Coefficients

Source: Voith

CFD allows formal optimization

- Parametric design
- Design evaluation by CFD
- Formal optimization

Navigator

Overview of problems and approaches

General guidelines for submarine hull design

Quiz

Hydrodynamic Assessment

Hull-Appendages Interference

Analysis Methods for Snorkels

Quiz

Design target: Hydrodynamic efficiency

Important design target in all designs:

- Minimize required power for given speed (weight, endurance)
- Maximize speed for given power

Two fundamental aspects:

- Resistance
- Propulsive efficiency

These interact!

Consider mission profile

Design starts with operational conditions and constraints:

- predominantly submerged operation (stealth)
- low speed in surfaced condition

Conclusion:

- Virtually zero wave resistance
- Wave making only important for signature in snorkeling condition

Resistance usually decomposed

Resistance cannot be measured at full-scale ship

Knowledge about ship resistance comes from model tests

Decomposition somewhat artificial:

- resistance components interact
- most components cannot be measured individually

Main components (for bare hull): friction

form

wave

We want to reduce power required, not resistance!

Friction resistance

Friction resistance

- Large shear stresses in boundary layer due to high velocity gradient
- Friction resistance = Sum of shear stresses over wetted surface
- Boundary layer in aftbody of submarine ≈ 0.5 m

Friction resistance depends on

- wetted surface (given by CAD)
- speed
- surface roughness

Sphere as best solution?

- least surface for given volume
- L/D = 1

But:

- Form resistance
- Propulsive efficiency
- (other design aspects: strength, producibility, manoeuvrability, ...)

Form resistance (Viscous pressure resistance)

Form induces local flow changes which increase resistance

Form resistance

local velocity sometimes higher/lower than ship speed

average of resulting shear stresses higher

 energy losses in boundary layer, vortices, flow separation avoid flow changes and hindrances the ideal is a needle...

• full hull shapes have higher form resistance than slender shapes

Opposing requirements...

- Optimum for sum of both components exists
 - very shallow
 - shifts when propulsion is considered

Laminar Flow Designs

- buzzword since the 1970s
- inspired by laminar flow aero-foil designs
- theoretically drag reduction up to 65% (on small hulls)
 based on model tests
- thought to revolutionize submarine designs

Then "pop", there goes the dream:

- real water has inherent turbulence level and numerous impurities
- laminar flow in sea water virtually impossible

Influence of some general hull parameters

key work at David Taylor Model Basin

GERTLER, M. (1950), Resistance experiments on a systematic series of streamlined bodies of revolution - for application to the design of high-speed submarines, DTMB Report C-297, Bethesda

LANDWEBER, L.; GERTLER, M. (1950), *Mathematical formulation of bodies of revolution*, DTMB Report 719, Bethesda

Systematic series

- systematic tests with streamlined bodies
- 6th polynomial envelope (no parallel midbody)
- axisymmetric bodies

Parameters varied:

• Fineness ratio L/D

• Prismatic coefficient $C_P = \nabla/(\pi \cdot 0.25 \cdot D^2 \cdot L)$

• Nose radius (nondim.) $r_0 = R_0 \cdot L/D^2$

• Tail radius (nondim.) $r_1 = R_1 \cdot L/D^2$

• Distance of max. cross section from nose: m = x/L

Results 1/5

Fineness ratio

key parameter for resistance (influences wetted surface for given volume)

• $L/D \approx 7$ optimum (considering also control surfaces)

Real submarines: L/D > 9

- due to practical requirements (space, producibility)
- penalty for "sub-optimum" shape is small
- L/D = 7 may be good for underwater robots

Results 2/5

Prismatic coefficient

- key parameter for resistance
- $C_P \approx 0.61$ optimum
- no significant change if considering also control surfaces

Caution: local shape (slope of body lines) influences form drag

This is not captured by simple variations as in Gertler (1950)

Near surface (snorkeling) condition:

- optimum unchanged for F_n < 0.23
- beyond that significant increase (but usually never operated in practice)

Results 3/5

Nose Radius

• different r_0 [0...1] investigated, but mostly $r_0 = 0.5$

German submarines: typically $r_0 \approx 2.5$ real submarines:

> based on L w/o parallel midbody $r_0 < 1.0$

> US nuclear submarines: typically $r_0 \approx 1.5$

• resistance minimum at $r_0 = 0.5$ (Gertler)

Results little more than indication due to much higher nose radius in practice

Results 4/5

Tail Radius

• different r_1 [0...0.2] investigated, but mostly r_1 = 0.1

• drag differences in this range: ±1%

Not really relevant, because propeller changes all...

Results 5/5

Position of maximum cross section

- resistance minimum at $x/L \approx 0.37 \cdot L$ (for L/D = 7, $C_P = 0.65$, $r_0 = 0.5$, $r_1 = 0.1$)
- strong increase of drag as x/L moves forward
- moderate increase as x/L moves aft

No statement on effect of parallel midbody

Forebody

- slender forebody good for resistance and low noise
- no consensus on forebody shape

Constraints on forebody design for submarines in practice:

- arrangement of torpedo tubes
- arrangement of sonar equipment

CFD used for local shape design

Aftbody

- must consider propulsion (propeller changes flow completely)
- cone angles > 20° (in propelled condition)
- thicker aftbody good for weight distribution and space requirements

CFD used for detailed assessment

Aspects of noise and sonar reflection

No conflict with low resistance

Low noise streamlined shape has low resistance & low noise

Low sonar reflection still no clear statements on this issue

only some guidelines can be given:

- avoid concave surfaces

(hull – sail connection critical in this respect)

- sonar target strength increases with size
- length more critical than diameter (target strength ~L² and ~D)

Navigator

Hull Design Aspects

Hydrodynamic Assessment
Hull-Appendages Interference
Analysis Methods for Snorkels
Quiz

Quiz: Do you know your design of submarines?

What is <u>not</u> used in (submarine) design?

- a. Broad-scale trial & error with prototypes
- b. Empirical / statistical approaches
- c. Model testing
- d. Numerical simulation

Which design approach is simple, fast and cheap?

- a. Broad-scale trial & error with prototypes
- b. Empirical / statistical approach
- c. Model testing
- d. Numerical simulations

What is a typical drawback of empirical approaches?

- a. cannot reflect details
- b. high cost
- c. scaling errors
- d. time consuming to apply

CFD is popularly referred to as...

- a. Design of Experiments
- b. Rapid Prototyping
- c. Numerical Towing Tank
- d. Virtual Reality

Which methods allows formal optimisation?

- a. CFD (numerical simulation)
- b. Experience-based design
- c. Full-scale prototyping
- d. Model testing

To minimize required power you should...

- a. decrease resistance & increase propulsive efficiency
- b. decrease resistance & propulsive efficiency
- c. increase resistance & propulsive efficiency
- d. increase resistance & decrease propulsive efficiency

∆5 DNV GL © 2013

Which resistance component can be neglected...

... for submarines?

- a. appendage resistance
- b. form resistance
- c. friction resistance
- d. wave resistance

Friction resistance accounts for X% of hull resistance...

... for submarines?

a.
$$X = 5 - 10\%$$

b.
$$X = 20 - 30\%$$

c.
$$X = 40 - 50\%$$

d.
$$X = 60 - 70\%$$

Boundary layer thickness in aftbody of submarine ≈

- a. 5 mm
- b. 5 cm
- **c.** 50 cm
- d. 5 m

Sphere is best solution only in terms of...

- a. Form resistance
- b. Friction resistance
- c. Producibility
- d. Propulsive efficiency

Ideal shape for form resistance is like a ...

- a. needle
- b. lentil (parabola)
- c. teardrop shape
- d. sphere

Laminar flow designs for submarines...

- a. were investigated by Landweber & Gertler
- b. did not work in real ocean environment
- c. reduced resistance by up to 85%
- d. worked better than for aero-foils

Landweber & Gertler performed systematic tests ...

on bodies of revolution at...

- a. David Taylor Model Basin
- b. DLR (Göttingen)
- c. Hamburg Ship Model Basin
- d. NURC (NATO Underwater Research Center)

Landweber & Gertler's family of streamlined bodies...

... had as envelope:

modern AUV

- Non-uniform rational B-spline (NURBS) a.
- parabola (aft) & straight line & ellipse (nose) b.
- parabola (nose) & straight line & ellipse (aft)
- higher-order polynomial d.

AUV = autonomous underwater vehicle

Landweber & Gertler's recommended for L/D...

... of underwater bodies of revolution:

- a. 3
- b. 5
- c. 7
- d. 9

Forebody of real submarine less slender...

than recommended by Landweber & Gertler because:

- a. CFD showed fuller shapes better at full scale
- b. fuller forebody reduces flow noise locally
- c. fuller shape OK in propelled condition
- d. internal space requirements leave no other choice

Aftbody of real submarine less slender...

than recommended by Landweber & Gertler because:

- a. CFD showed fuller shapes better at full scale
- b. fuller aftbody reduces flow noise locally
- c. fuller shape OK in propelled condition
- d. internal space requirements leave no other choice

Navigator

Hull Design Aspects

Quiz

Hydrodynamic Assessment

CFD Methods

Model tests

Flow analysis on the sonar part

Hull-Appendages Interference Analysis Methods for Snorkels Quiz

What is CFD?

CFD = Computational Fluid Dynamics

Solves flow equations

- Navier-Stokes
- RANSE,
- Euler
- Laplace ("Poti")

using numerical techniques

• FEM, FVM, FDM, BEM, ...

Potential flow codes

Potential flow codes

- neglect viscosity
- elements only on surface
- fast and cheap (optimization)
- limited accuracy

RANSE

- expensive
- better model (breaking waves, flow separation)

Wave resistance codes

Can do: Wave formation (and wetted surface)

Dynamic trim and sinkage (squat)

(slender) lifting surfaces

Cannot do: Viscosity

Breaking waves

Propulsion & Appendages

Panel codes – fast enough for design

- Surface mesh only
- typically 2000 20000 panels
- mesh generation 5-50 s
- CPU times 1-5 min

Main application:

- analyses in snorkeling condition
- also seakeeping & propeller flows

25 years of experience

Moderate nonlinearities handled

Source: HSVA

Lifting-surface method

Particularly: Vortex-Lattice Method (VLM)

Propeller blade reduced to grid of horseshoe vortices

- © blade modeled 3-d
- © good convergence with grid refinement
- handles 'arbitrary' cases (CRP, unsteady inflow, nozzle-propellers,...)
- ressure distribution must be corrected at propeller hub
- (3) tip vortex not captured

CRP = contra-rotating propeller

Panel method

Lift and thickness modeled Propeller boss modeled

- no simplifications besides potential flow assumption
- in the velocities in hub region
- ☼ increased CPU time
- (3) tip vortex still not captured

Potential flow codes

Potential flow codes

- neglect viscosity
- elements only on surface
- fast and cheap (optimization)
- limited accuracy

RANSE

- expensive
- better model (breaking waves, flow separation)

RANSE - Better model, more effort

Volume grid

• 0.5 - 5 million cells

mesh generation: 0.5 - 5 days

• CPU times: 1-5 days (on PC cluster)

Typical application: Appendages

RANSE captures viscosity, dominating flows at appendages

Example: Alignment of appendages

Soure: HSVA

Typical application: Appendages

CFD analyses reveals misalignment

Soure: HSVA

Submarines are prime candidates for CFD

- Not easy to observe in model test
- Viscosity dominates
- Budget and time "no problem"

CFD applied to <u>some</u> problems

Source: HSVA

Navigator

Hull Design Aspects

Quiz

Hydrodynamic Assessment

CFD Methods

Model tests

Flow analysis on the sonar part

Hull-Appendages Interference Analysis Methods for Snorkels Quiz

Initially it did not work...

Historic model tests (1761)

Wave forces follow Froude

Froude number
$$F_n = V / \sqrt{g \cdot L}$$

Important parameter for waves,

where only gravity and inertia matter

E.g. ship wave pattern:

- geometrically similar for Froude similarity
- associated wave resistance coefficient same in model and full scale

Viscous forces follow Reynolds

$$R_n = \frac{V \cdot L}{v}$$

Reynolds number

Same Reynolds number in model and full scale ensures dynamic similarity if only inertial and friction forces present

Reality more complicated:

- laminar turbulent transition
- surface roughness
- flow separation

Model test basin

Recirculation tunnel (propeller testing)

Source: HSVA

74 DNV GL © 2013 DNV·GL

Scaled-down models

- as large as possible ...
- ... but small enough
- to avoid strength problems
 - internal strength
- loads on test carriage
- for max. test carriage speed
- to avoid problems with restricted water

4 m < L < 10 m ~ 1000 kg

Source: HSVA

Model tests not 100% similar

Froude number <u>and</u> Reynolds number cannot be kept at model scale!

Model tests "wrong" for appendages (which are driven by viscous forces)

Navigator

Hull Design Aspects

Quiz

Hydrodynamic Assessment

Hull-Appendages Interference

Analysis Methods for Snorkels

Quiz

Appendages 1/3

Appendages & hull openings

- secure smooth curvature of hull surface in streamline direction
- avoid obstacles as far as possible
- for absolutely necessary appendages
 - streamline, or
 - make removable,
 - or make to drop flush with surface
- for absolutely necessary hull openings
 - minimize size
 - streamline (using CFD)

Like propeller, like foil...

Source: HSVA

Hull and foil interact

boundary reduces velocity (20-50 cm in aftbody)

- hull changes velocity outside boundary layer
 - change in magnitude (increase)
 - change in direction

Significant for foils of small aspect ratio

Some insight from wind tunnel tests

- extensive experiments for aerospace industry
- classical computations & experiments compiled into design curves
- not recommended for asymmetric configurations (use CFD instead)

CFD application to aft hydroplane

Submarine with foils

Source: HSVA

Navigator

Hull Design Aspects

Quiz

Hydrodynamic Assessment

Hull-Appendages Interference

Analysis Methods for Snorkels

Quiz

DNV·GL

Two approaches used for free-surface RANSE

Interface tracking

- Exact representation of free surface
- Unsuited for complex geometries

Interface capturing

- Ability to handle wave breaking
- VOF, Level Set, Two-Phase

RANSE = Reynolds averaged Navier-Stokes equations VOF = Volume of Fluid

Interface capturing allows complex wave breaking

$$\alpha = \begin{cases} 1 & \text{for cells inside fluid 1} \\ 0 & \text{for cells inside fluid 2} \\ 0 < \alpha_0 < 1 & \text{for transitional area} \end{cases}$$

1	1	1	.68	0
1	1	1	.42	0
1	1	.92	.09	0
1	.85	.35	0	0
.31	.09	0	0	0
0	0	0	0	0

High Froude numbers and breaking waves

Also in struts for underwater model tests

87 DNV GL © 2013 DNV·GL

Free-surface RANSE captures wave breaking

Circular section strut, $F_n=2.03$, $R_n=3.35\cdot10^6$

Source: HSVA

Wave height increases with thickness of profile

Wave characteristics changed

Transverse plate reduces waves

Parabolic strut

Transverse plate reduces waves

Source: HSVA

Thank you for your attention – and now...

Navigator

Hull Design Aspects

Quiz

Hydrodynamic Assessment

Hull-Appendages Interference

Analysis Methods for Snorkels

Q4 DNV GL © 2013

Quiz: Do you know your design of submarines?

What is definitely <u>not</u> a CFD method?

- a. Euler solver
- b. Laplace solver
- c. Paint solver
- d. RANSE solver

The Reynolds number ...

- a. ensures similarity of flow separation
- b. ensures similarity of surface roughness
- c. increases with length
- d. is kept same on model and full scale in ship model basins

What cannot be captured by wave resistance codes?

- a. breaking waves
- b. dynamic trim & sinkage
- c. lifting surfaces
- d. limited water depth

Order computational methods in increasing complexity

- a. lifting surface panel RANSE
- b. panel lifting surface RANSE
- c. panel RANSE lifting surface
- d. lifting surface RANSE panel

DNV·GL

Stroboscopic light is used...

- a. for non-intrusive velocity measurements
- b. to detect flow separation on hulls
- c. to make blade and cavitation appear stationary in propeller tests
- d. to measure unknown geometries (for CFD)

What is best for assessing flows on appendages?

- a. lifting surface method
- b. model test
- c. panel method
- d. RANSE

The Froude number is a ...

- a. non-dimensional gravity force coefficient
- b. non-dimensional parameter combining speed & viscosity
- c. non-dimensional speed parameter
- d. non-dimensional wave resistance coefficient

Snorkels are best shaped like ...

- a. cylinders (circular)
- b. lentils (parabolic)
- c. reverse teardrop
- d. teardrop (profile)

Model tests in ship model basins ...

- a. are "wrong" for appendages
- b. ensure similar friction forces by keeping Froude numbers constant
- c. ensure similar wave breaking by keeping Froude numbers constant
- d. keep Reynolds numbers constant

Ship models in professional basins weigh ...

- a. 10 kg
- b. 100 kg
- **c.** 1000 kg
- d. 10000 kg

Propeller models are typically tested in...

- a. cavitation tunnels
- b. propulsion test basins
- c. towing tanks
- d. wind tunnels

Compared to condition in open water, a control foil ...

... attached to a submarine ...

- a. has less lift (due to the lower velocity in the boundary layer)
- b. has more lift (due to the higher speed around the hull)
- c. has same lift. That is why we generally work with open-flow diagrams...
- d. is complicated due to spanwise changes both in magnitude and direction

Hull-propeller-rudder interaction best investigated by

- a. lifting surface method
- b. model test
- c. panel method
- d. RANSE

108 DNV·GL © 2013

What is <u>not</u> a recommendation for appendages?

- a. make appendages flush with surface
- b. make appendages large enough to create complete recirculation
- c. minimize size of appendages
- d. streamline appendages

Different physics between model test and real ship...

... are generally called...

- a. "Applicability Issue"
- b. "Model Problem"
- c. "Scaling Errors"
- d. "Size Matters"

Potential flow codes generally use...

- a. Boundary element methods
- b. Finite Difference Methods
- c. Finite Element Methods
- d. Finite Volume Methods

111 DNV GL © 2013 DNV·GL

Time for a break?

Thank you...

Volker Bertram

volker.bertram@dnvgl.com

www.dnvgl.com

SAFER, SMARTER, GREENER

11 DNV GL © 2013 DNV·GL