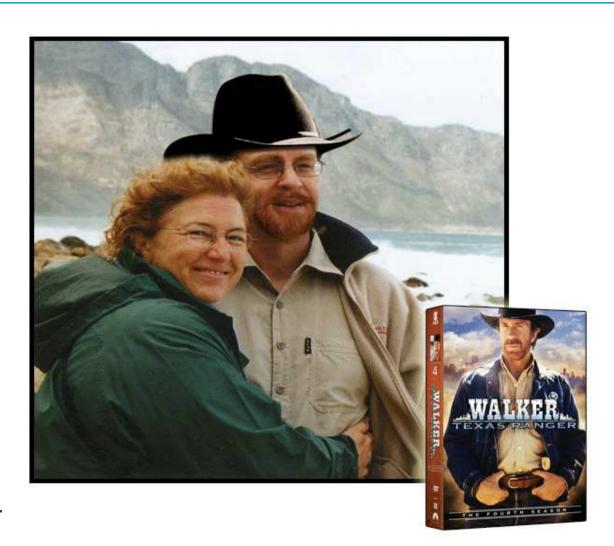

VOLKER BERTRAM

Teaching Engineering in the 21st century

No shortage of buzzwords


- •e-learning
- •multimedia labs
- andragogy
- •self access center
- •mobile learning
- learning facilitator
- competence based learning
- edutainment

• • • •

Hm, sounds groovy.
Should we do it?

How dare you?

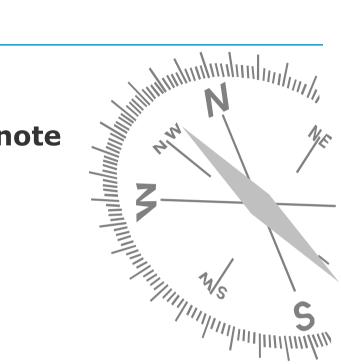
Volker – Teachers' Ranger

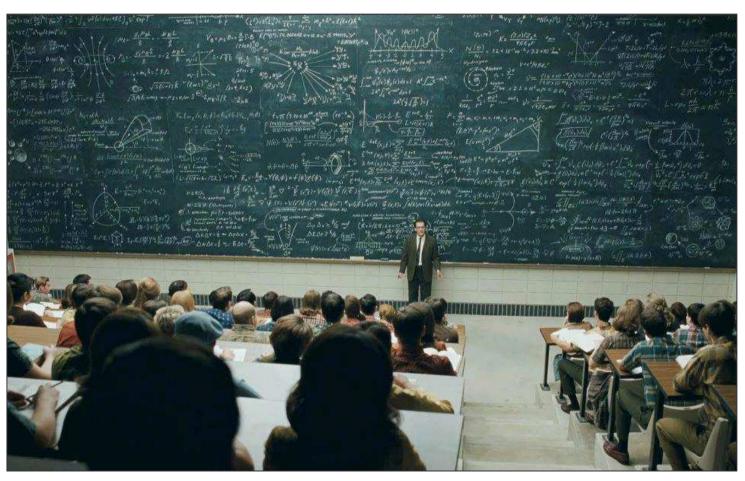
OK, so I am blind, too. But...

- my wife gives me hell (she studied pedagogy)
- I have a Master and a Diplom
- I have taught in Denmark, France, Germany, Italy, Sweden, South Africa
- ... and now DNV GL Academy
- participated in ONR workshop on teaching Nav Arch
- was tasked to counsel on "future teaching in engineering" in Chile

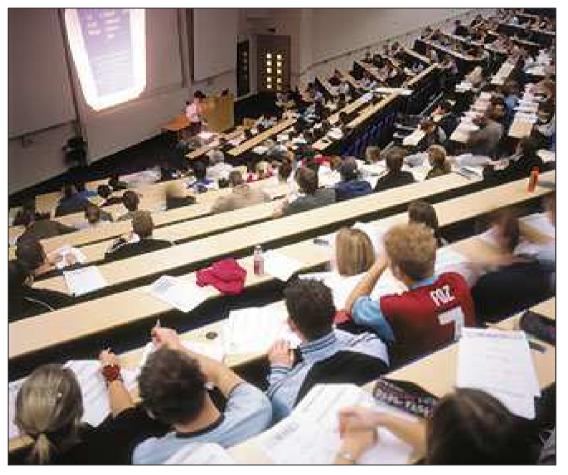
So you can say "I see..."

Navigator


Competition & New entrants


Customer – Industry expectations

Supply – Our students


Substitutes – E-Learning & Co.

Some heretic thoughts

Yesterday Blackboard & teacher

TodayPowerPoint & teacher

Tomorrow: ???

Self access center

Hey! Where's the teacher gone?!

In theory, this is a great new world

SELF ACCESS CENTERS (SACs):

Self-access learning gives you the opportunity to develop initiative, **responsibility**, self-awareness, confidence and **independence in learning**. It is about making choices and having **flexibility** in learning.

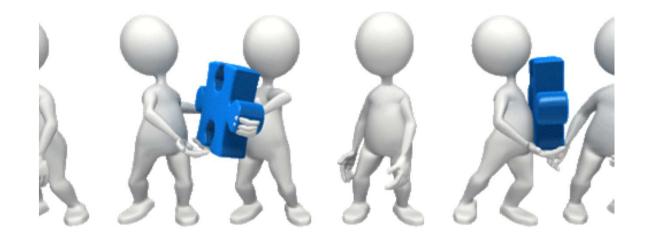
Description from SAC website at Hong Kong University of Science & Tech.

Great !!!

Really ?!

Great in theory, but...

Guess frequent problems with Self Access Centers

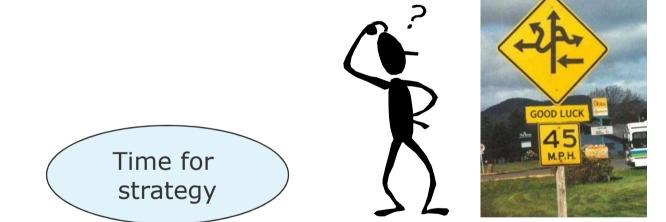


In practice, it did (does) not work

- Expensive to set up a good one
- Need to be staffed (no budget, no training, wrong profile)
- Badly organized
- Material gets stolen
- Half the computers don't work
- Security issues
- Students have no time or are not motivated to use them

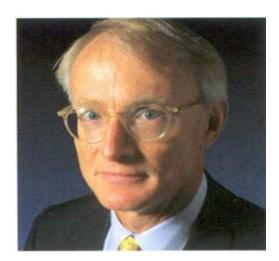
Teaching & technology must go hand in hand

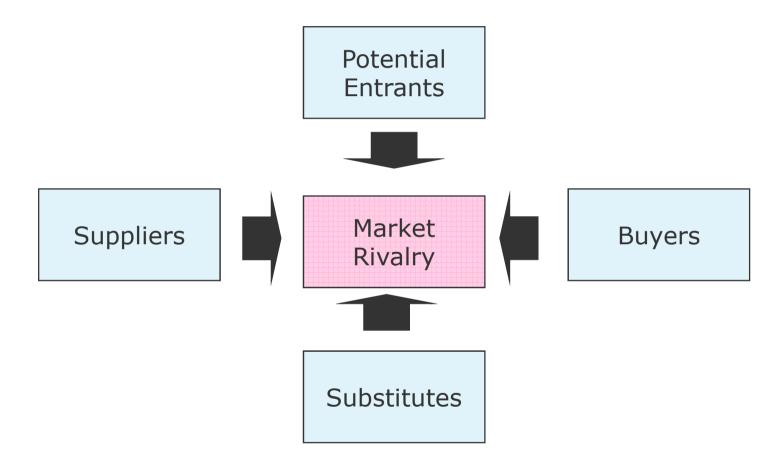
As Facebook says: It is complicated


Let's have a closer look

Time for some strategic analysis

For those who don't know to which port they are sailing, no wind is favorable.*


Seneca


^{*} Ignoranti, quem portum petat, nullus suus ventus est.

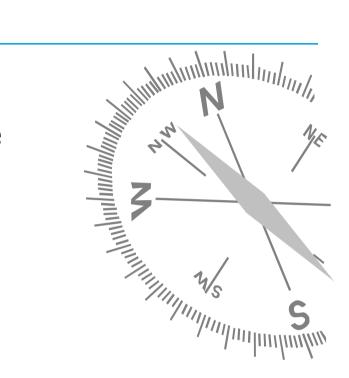
Let's try the Porter model

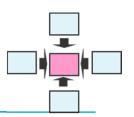
- named after Michael E. Porter (Harvard Business school)
- standard model in management strategies
- helps structuring thoughts

Porter model

Navigator

Setting the theme – On a cynical note


Competition & New entrants


Customer – Industry expectations

Supply – Our students

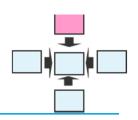
Substitutes – E-Learning & Co.

Some heretic thoughts

Market (Competitors)

The traditional market for "Dipl.-Ing." NAOE

• Berlin Dipl.-Ing.

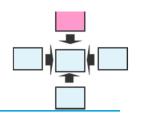

• Duisburg Dipl.-Ing.

• Hamburg Dipl.-Ing.

Rostock
 Dipl.-Ing.

Rather constant "market shares" & transparent markets

NAOE = Naval Architecture & Ocean Engineering



Bologna Accord / Bologna Treaty

 signed in 1999 in Bologna to be implemented by 2010

- goal: harmonized university education in Europe
- 3-2-3 system (BSc MSc PhD)
- slow response in countries with strong "home market" (DE, FR, IT)

"Universities of Applied Science"

New local entrants increase pressure

- Berlin B.Eng. M.Eng. PhD
- Duisburg B.Eng. M.Eng. PhD
- Hamburg B.Eng. M.Eng. PhD
- Rostock B.Eng. M.Eng. PhD
- Bremen B.Eng. M.Eng.
- Kiel B.Eng. M.Eng.

increased competition

EU competitors

The game is now international

• Berlin B.Eng. M.Eng. PhD

• Duisburg B.Eng. M.Eng. PhD

• Hamburg B.Eng. M.Eng. PhD

Rostock
 B.Eng.
 M.Eng.
 PhD

• Bremen B.Eng. M.Eng.

• Kiel B.Eng. M.Eng.

• 30+ B.Eng. M.Eng. PhD EU Universities

Expected consequences:

local competition for 'bachelor' (in home language)

Problem: produce enough **qualification** for students to enter job market graduates will require **re-training later** in professional career

international competition for 'master'

Problem: offer it in (imperfect) **English** or face brain-drain accelerated **consolidation** will kill some smaller players

⊗ losers: France, Germany, Italy

© winners: UK, USA, Scandinavia

Expected consequences:

PhDs in engineering in shorter time

Problem: **PhD supervisors** do more (work overload?) and/or

quality declines (depth, independent research)

Need for continuous professional development

Problem: demand for long-distance training

demand for intensive (block) training (summer schools)

demand for after-hours training

Bologna changes landscape 2/2

Expected consequences:

Retraining need will stimulate continuous professional development

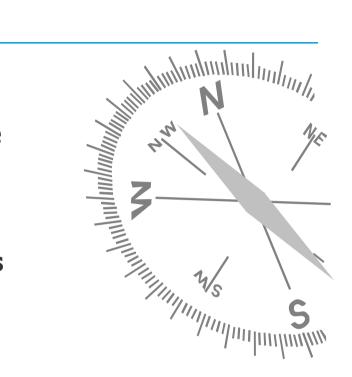
Problem: demand for long-distance training

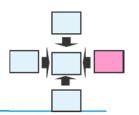
demand for intensive (block) training (summer schools)

demand for after-hours training

Navigator

Setting the theme – On a cynical note

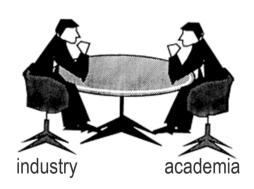

Competition & New entrants



Supply – Our students

Substitutes – E-Learning & Co.

Some heretic thoughts


Industry expectations elaborated in workshop

OK, industry needs naval architects (XYZ engineers), but...

"What should a naval architect (XYZ engineer) know?"

ONR Workshop 2004 "Teaching Future Ship Designers"

- all US universities
- some EU universities
- main US industry employers

Do they know what they want?

Customers know what they want, but **often unable to express** it clearly

Example:

"We want a car door that shuts well"

Some misleading specifications for engineers

Example:

"We want creative people"

meaning

"We want engineers who can use first-principle methods."

What should be taught (industry & university discussion)

Good base in naval arch.

/ engineering principles

strength and structural design

production

hydrosta! Jility

ship design s, layout, estimations)

hydrodynamic

marine engineering

Computer literate

CAD proficiency seer s in gap

level of competence how the specified

tradition: nav arch fic fech eng

trend: nav arch = excepted computer science

Hands-on experience

as worker as er ing at sea at sh yard

more specialized knowledge, more math at master level

What should be taught (industry & university discussion)

soft skills ability to study independently

creative with feel for viability o

enthusiastic team capability

management skills

project mage and communication ation basic leg from mey remotivation.

rks (contracts, work)

engineering English

technical business

What shall we teach?

Teaching content subject to various forces:

- industry expectations
- professors' competences
- suitability of university environment to learn topic
- financial constraints of university

(industry pays? Nice dream)

(students pay? Nice dream)

Resulting compromise seen as half-full, half-empty glass

There is learning outside university

When should topics be learnt?

- in lectures every year / semester / second year ?

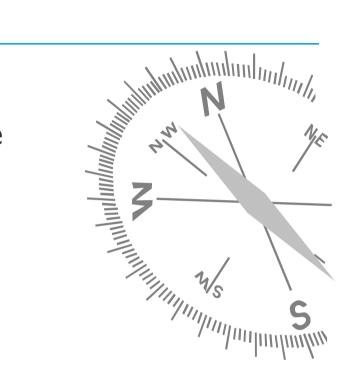
on occasion?

compulsory / elective ?

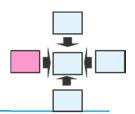
- in formal exercises under supervision
- in laboratories (expensive, outdated?)
- in projects with occasional contact to supervisor
- in excursions
- during internship
- in industry after graduation

Navigator

Setting the theme – On a cynical note


Competition & New entrants

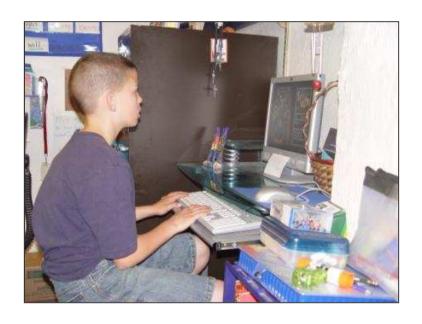
Customer – Industry expectations



Substitutes – E-Learning & Co.

Some heretic thoughts

Suppliers


Our raw material: The high-school graduate

What changes have we noticed in the last 30 years?

We notice changes in students

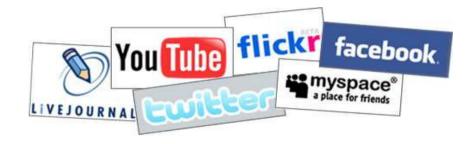
Today's high-school kids are tomorrow's students

"Digital natives"

"Today's average college grads have spent <5,000 hours of their lives reading, but >10,000 playing video games..."

"...it is very likely that our student 's **brains** have physically **changed...**"

(Prensky 2001)


Next-generation engineers

They won't even know what this is!

They are "Digital Natives"

They use these every day!

They (Digital natives) are different from us (Digital immigrants)

- used to getting information fast
- prefer graphics before text
- prefer random access (hypertext)
- like to network
- thrive on instant gratification
- prefer games to serious work
- want "edutainment"

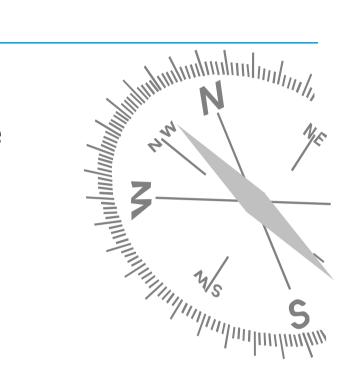
Source: Prensky (2001)

From "Gods" to service providers?

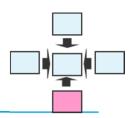
Students rate us and have demands (on others)

Navigator

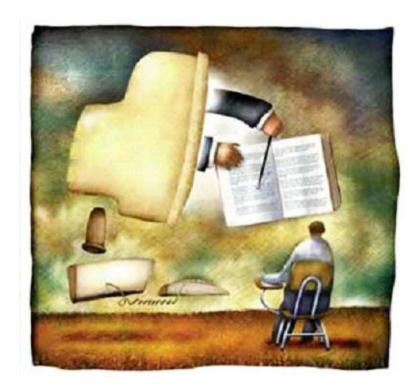
Setting the theme – On a cynical note


Competition & New entrants

Customer – Industry expectations


Supply – Our students

Substitutes – E-Learning & Co.


Some heretic thoughts

How about distance learning / e-learning ?

Yes, we can - in principle...

Elementary learning techniques are media independent

watching blackboard

reading books / lecture notes

doing exercises

physics labs

projects

testing/evaluating in class

homework submission

powerpoint / videos

internet texts

exercises virtual labs projects

on-line

homework submission

Distance-teaching requires more work

All documents must be electronic

lecture notes pdf

exercises and solutions pdf, excel, interactive on-line

possibly automatically corrected

lectures ppt, video, webcam

tests via internet, perhaps even smartphone


infrastructure moodle (?)

This all requires work = **time & money**

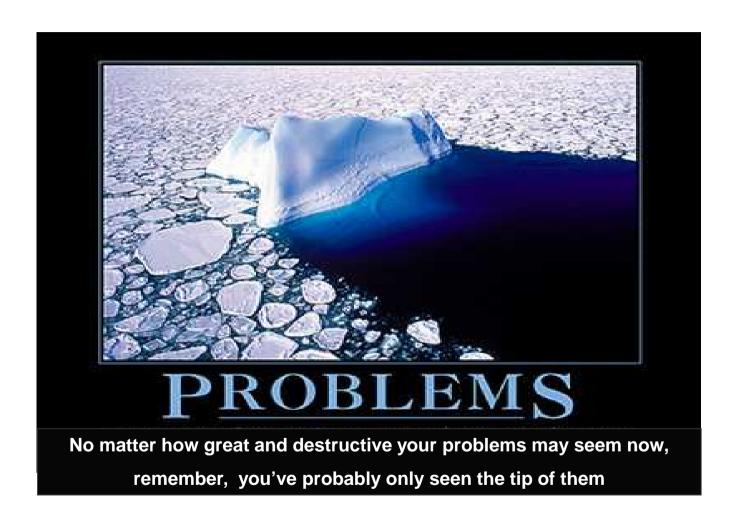
DNV GL © 2013

best teachers often not computer literate,

computer gurus often don't know what needs to be taught

no budget for conversionto electronic teaching

if you don't have time & money for writing a book...

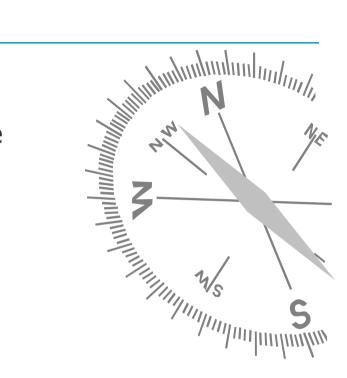

... you definitely don't have it for (decent) e-learning packages

no feedback from students

(see the look in their eyes and you know they are lost)

Navigator

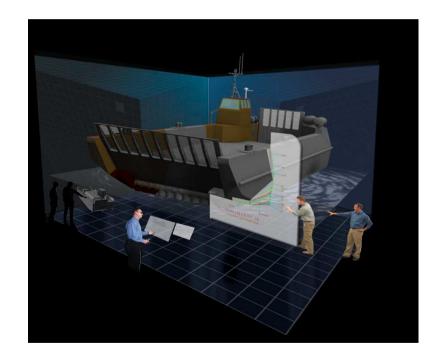
Setting the theme – On a cynical note


Competition & New entrants

Customer – Industry expectations

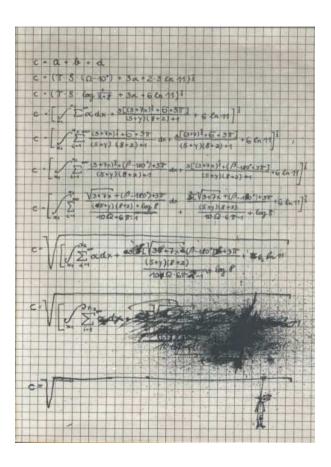
Supply – Our students

Substitutes – E-Learning & Co.


Some heretic thoughts

Do we need **classical laboratories** (toys)

OR

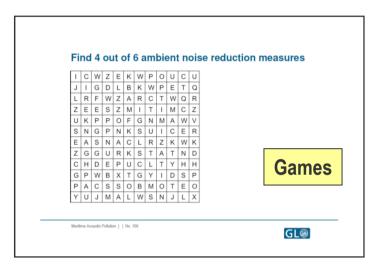

Are 'virtual labs' the future?

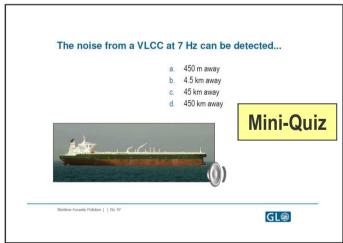
Do we need

 (lengthy) mathematical derivations in class?

Why not give derivation in pdf to download and focus on assumptions and resulting limitations?

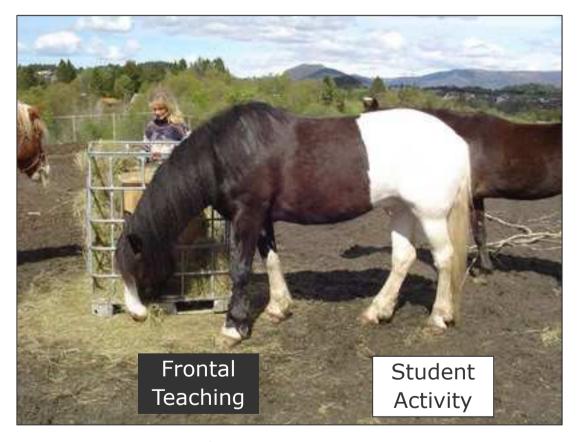
Do we need that much frontal teaching?




Death by Powerpoint

DNV GL © 2013

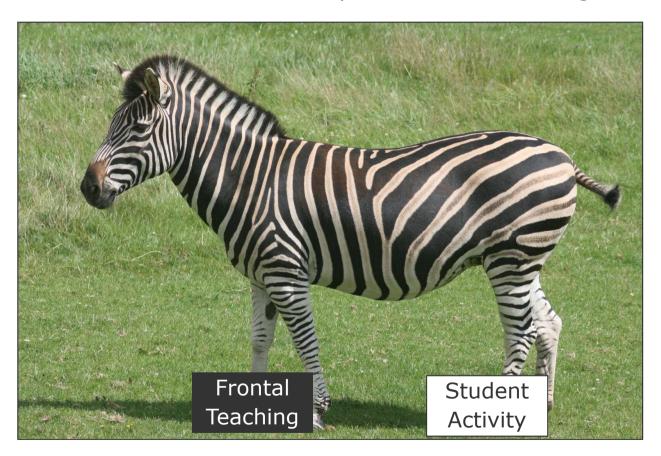
There are alternatives



Source: DNV GL Maritime Academy

Do we need to change our timing?

Current organisation:



~1.5h

DNV GL © 2013

Do we need to change our timing?

Should be: Max. 15 min and then they have to do something

Example - How my teaching has evolved

Part of teaching energy efficiency of oil tankers

- Version 2001
- Version 2010
- Version 2012
- Version 2015

Aim: To show how energy efficient large ships are

2001

Power-mass ratio

	P[kW]	m [t]	P/m [kW/t]
Porsche	408	1,8	227
Mercedes	150	2,40	63
Tug	2300	520	4
Containership	57100	125000	0,5
VLCC	29500	420000	0,07

Tanker are low-powered

227 kW/t

63 kW/t

4 kW/t

0.5 kW/t

0.07 kW/t

Light bulb powers car

Quiz-Time

Tankers have 0.07 kW/t as power-mass ratio.

What engine power should be installed in a car (e.g. yours) to have the same efficiency?

Tankers are extremely efficient

Light bulb powers a car

What engine power would be needed ...

... for a compact car to have the same power-mass ratio as a VLCC ?

- a. $\sim 100 \text{ W}$ (light bulb)
- b. $\sim 1 \text{ kW}$ (coffee maker)
- c. $\sim 5 \text{ kW}$ (water heater)
- d. $\sim 10 \text{ kW}$ (lawn mower)


VLCC = very large crude carrier = supertanker

Conclusion

- Increasingly international competition
- **Students change** we need to adapt
 - gamification of teaching
 - pedagogy more important than IT
 - change teaching roster
- CPD increasingly important
 - by universities
 - by private suppliers

CDP = continuous professional development

Thank you for letting me live this far...

Let the debate begin...

We are here to help you!

Volker Bertram

DNV GL - Maritime Services

volker.bertram@dnvgl.com
+49 40 36149 3457

www.dnvgl.com

SAFER, SMARTER, GREENER

