A particle filter SLAM approach to online iceberg drift estimation from an AUV

Petter Norgren

Department of Marine Technology, NTNU

October 27th, 2016

Department of Marine Technology, Norwegian University of Science and Technology (NTNU), Otto Nielsens Veg 10, NO-7491 Trondheim, Norway, NTNU Webpage: http://www.ntnu.no/aur-lab

SAMCoT SFI Sustainable Arctic Marine and Coastal Technology

NTNU

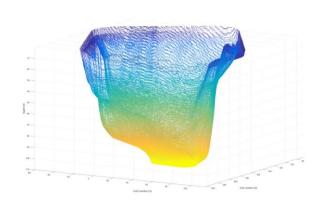
Centre for Autonomous Marine **Operations and Systems**

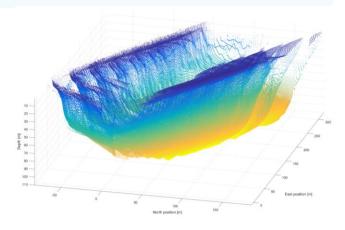
- Motivation
- Simultaneous Localization and Mapping (SLAM)
- Preliminary results
- Summary and way forward

Iceberg mapping using AUVs

Motivation

- Detailed keel geometry needed to develop iceberg drift models.
- Accurate navigation may be a problem.
 - Deep waters make down-looking DVL useless for bottom-tracking.
- Mission planning in moving reference frame.
 - Unknown translational velocity (measurable using DVL when directly below).
 - Unknown rotational velocity (not possible to measure with DVL).
- Warping of measured data due to motion of ice.





The AUV ice mapping problem

Problem statement

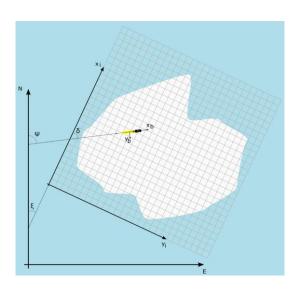
- Estimate AUV position relative to ice.
 - Reference measurements to a ice-fixed coordinate system to avoid warping.
 - Use relative position for guidance of vehicle to generate optimal path for mapping.
- Estimate translational and rotational velocities of the ice.
- Obtain 3D geometries of the underside of the ice.



The AUV ice mapping problem

Chosen strategy

- Bathymetric distributed particle filter SLAM [1].
 - Rao-blackwellized particle filter.
 - One 1D EIF for each cell in map.
 - Ancestry tree to avoid costly copy operations.
- Grid-map of predefined size and resolution.
- Static iceberg in moving reference frame.
- Upward-looking multibeam sonar.



^[1] S. Barkby, S. B. Williams, O. Pizarro, and M. V. Jakuba, "A featureless approach to efficient bathymetric SLAM using distributed particle mapping", Journal of Field Robotics, vol. 28, no. 1, pp. 19–39, 2011.

- Motivation
- Simultaneous Localization and Mapping (SLAM)
- Preliminary results
- Summary and way forward

Simultaneous Localization And Mapping

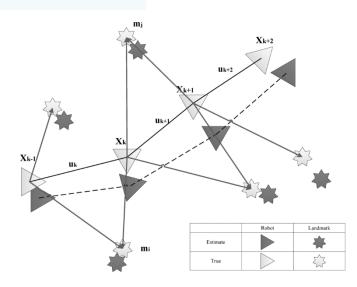
The robot is exploring an unknown, static environment.

Given

- A set of inputs (i.e. robot controls, U_{0:k}).
- Observations of nearby features from some sensor (Z_{0:k}).

Estimate

- Map of features (m).
- Pose/path of the robot (x_k).



Ice mapping SLAM algorithm

Particle filter algorithm

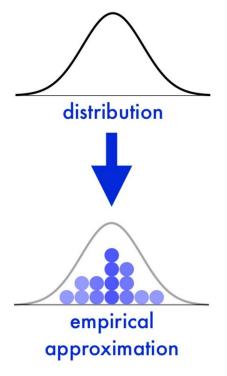
- 0. **Initialize** particles with initial ice pose. Initialize empty map (and insert prior information, if any).
- 1. for k=1 to end
 - 2. **for** i = 1 to $N_{particles}$
 - 3. **Propagate** each particle to next timestep.
 - 4. Weight particle based on agreement with map.
 - 5. end for
 - 6. **Resample** particle set based on weights.
 - 7. **Update** the maps of the surviving particles.
- 8. end for

Propagate

Iceberg model

$$\dot{\boldsymbol{\eta}}_{io}^n = R_i^n(\psi_{io})\boldsymbol{v}_{io}^i$$

$$\dot{\boldsymbol{v}}_{io}^i = -T^{-1}\boldsymbol{v}_{io}^i + \boldsymbol{\omega}_{io}$$



Courtesy: NOAA

Weighting

Multibeam observation model

Multibeam measurements:

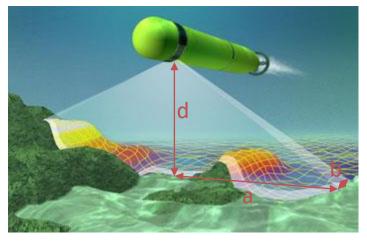
$$z = [r \quad \alpha \quad \beta]^T$$

Measurement function:

$$\hat{\mathbf{z}} = h(\mathbf{p}_{ra}^i, E_z) + \boldsymbol{\omega}$$

$$h = \left[\sqrt{b^2 + a^2 + d^2} \quad \operatorname{atan}\left(\frac{a}{d}\right) \quad \operatorname{atan}\left(\frac{b}{d}\right)\right]^T$$

Weighting of each beam is performed using the likelihood function for the normal distribution.



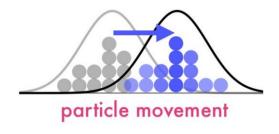
Courtesy: MBARI

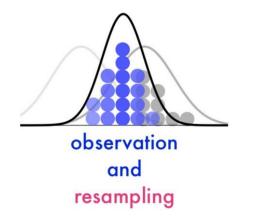
Resampling

Sampling importance resampling (SIR)

- 1. Calculate importance weights w_i for each particle (joint likelihood of each beam weight).
- 2. Normalize weights $q_i = \frac{w_i}{\sum w}$.
- 3. Resample particles with probability q_i .

I.e. particles that have good correspondence with map have higher probability for surviving (getting resampled).





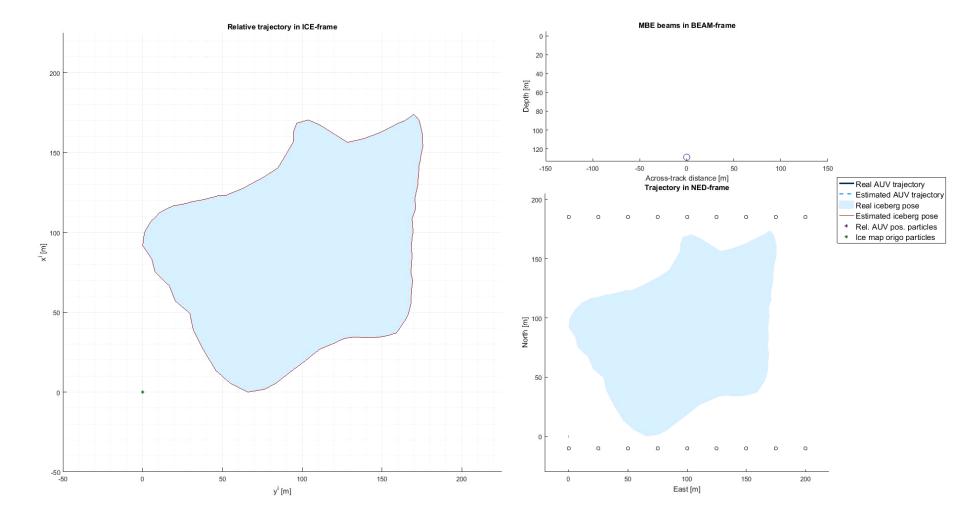
Update

Observation map

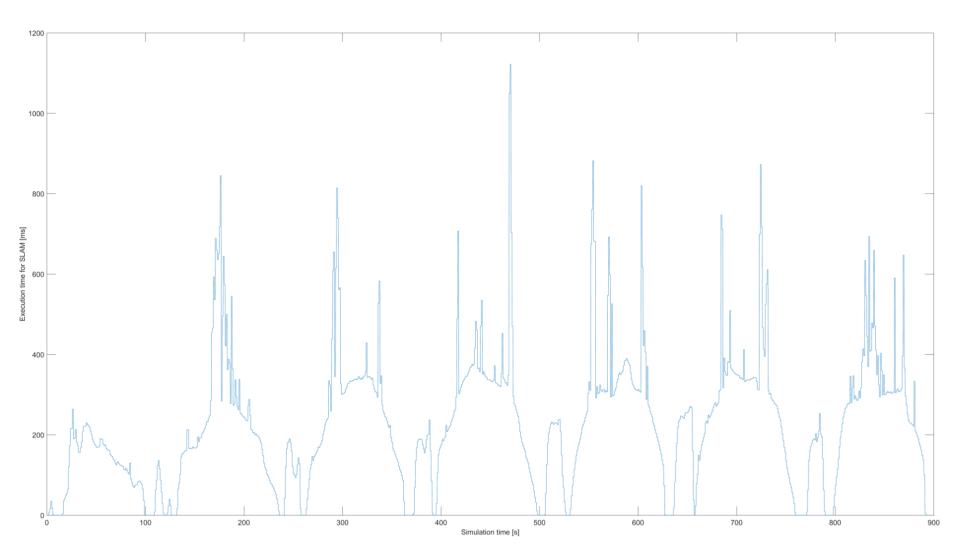
- All observations are keyed with particle id and put in a grid-map.
- Ancestry tree keeps track on particle ancestry to avoid using one grid map per particle.
- If an update exist in grid square from a particular particle,
 estimate is updated using the extended information filter (EIF).
- Why EIF instead of EKF?
 - EKF has efficient prediction, but slow correction.
 - EIF has slow prediction, but efficient correction.
- One square in the grid contains one EIF per particle that has updated that square.

- Motivation
- Simultaneous Localization and Mapping (SLAM)
- Preliminary results
- Summary and way forward

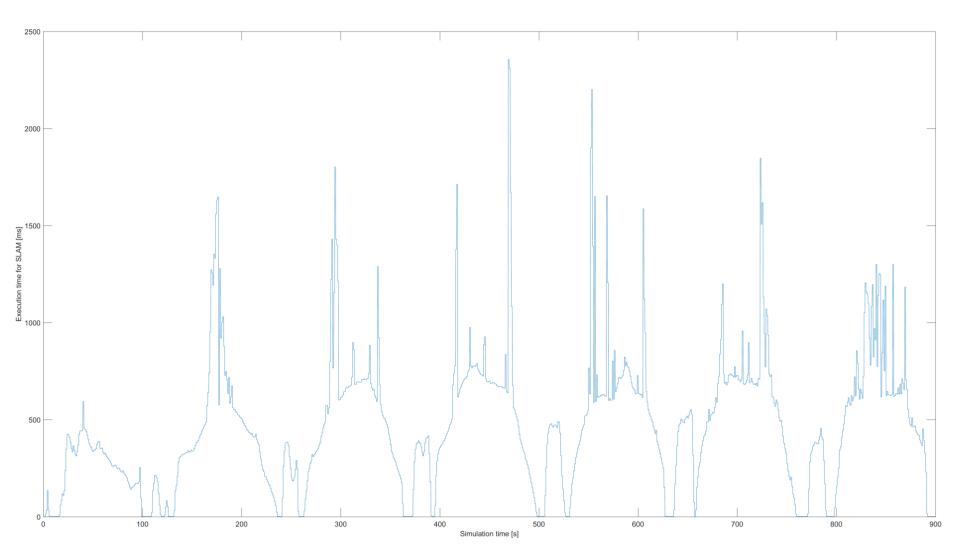
Preliminary results



Execution time (100 particles)



Execution time (200 particles)



- Motivation
- Simultaneous Localization and Mapping (SLAM)
- Preliminary results
- Summary and way forward

Summary and way forward

- Iceberg SLAM is implemented and working for stationary iceberg.
 - Implement guidance system for following trajectory in ice-frame.
 - Test on drifting and rotating iceberg.
- Optimize algorithm for real-time execution.
 - Parallelize algorithm.
 - Look into more efficient data structures for maintaining data.
- Implement a more memory efficient map structure.

Thank you for your attention!