

NTNU SmallSat: a Hyper-spectral imaging mission

Mariusz E. Grøtte¹

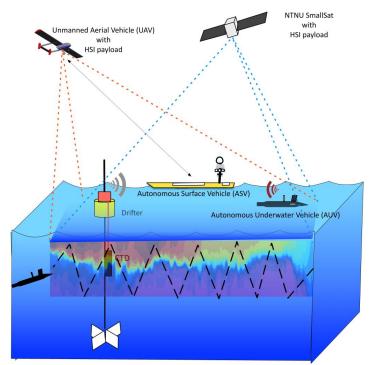
¹ Center for Autonomous Marine Operations and Systems (AMOS), Department of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

09/11/17

Image: Chl-a concentrations off the coast of Norway. Credit: NASA

Chl-a concentration in the Baltic

Video credit: ESA. Data provided from Sentinel-3

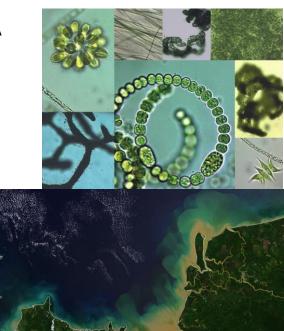


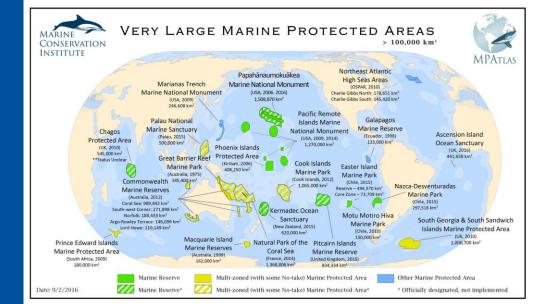
Overview

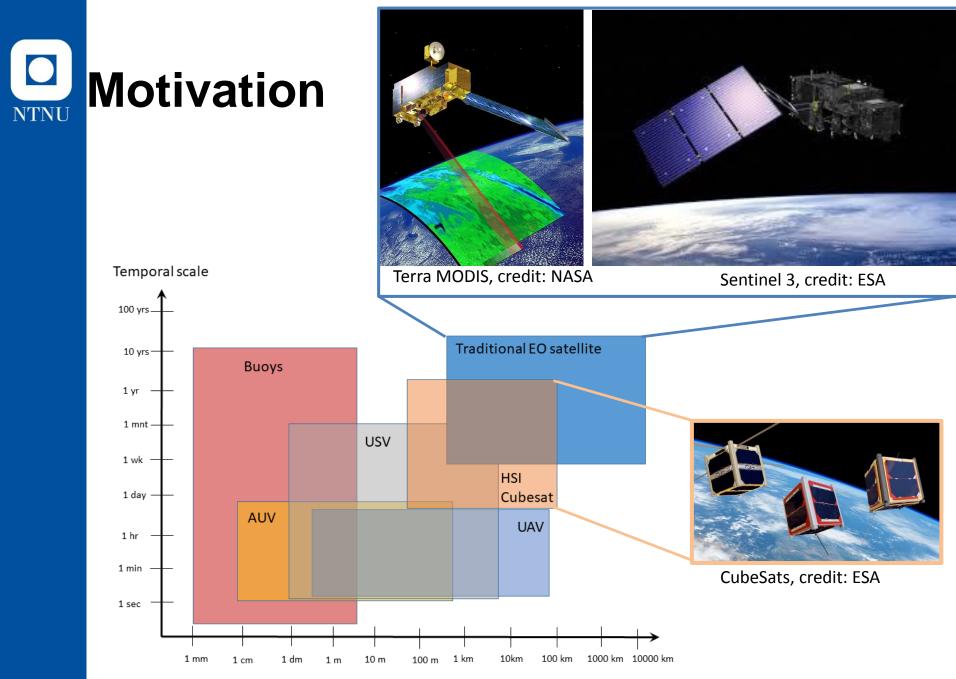
- Background & Motivation
- Hyperspectral Imager payload
- Mission Design
 - Success criteria & requirements
 - Mission architectures
 - Verification and testing plan
- Software & hardware
 - Data processing pipeline
 - PCB for HSI
- Mission Analysis
 - Orbit and target
 - Remote sensing
- Budgets
 - Data
 - Power
- Conclusions

Algal bloom; credit: ESA

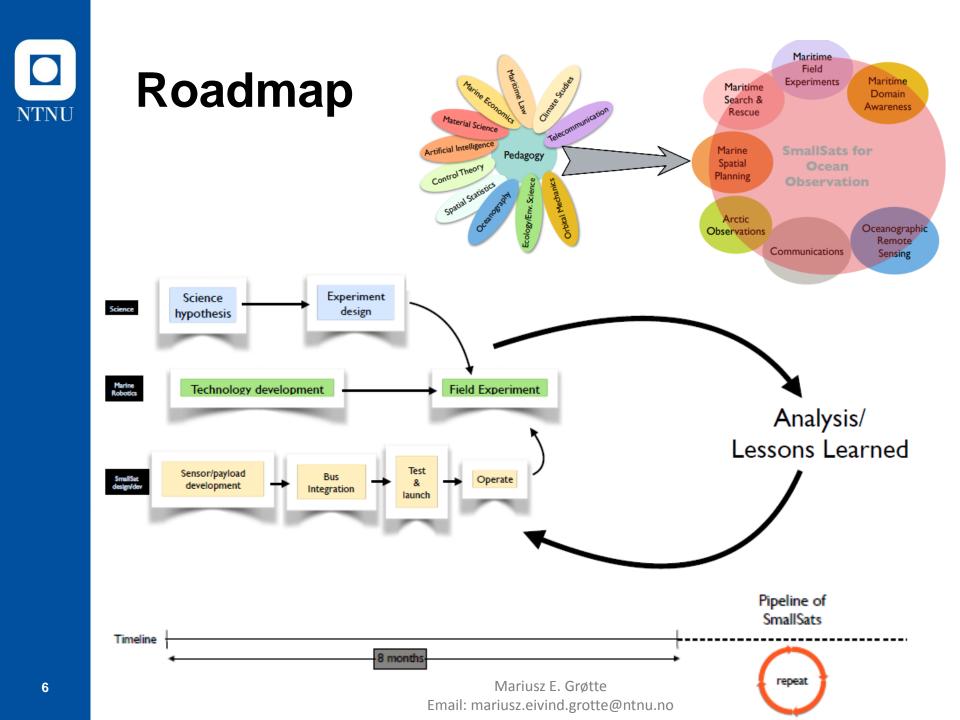
Background


- Ocean Color
 - Algae; HABs
 - Phytoplankton
 - Cyanobacteria/toxins
 - River plumes/oil spill
- Norwegian fish farms
- Global climate change
- Marine habitats
- Microplastic (<5mm)


Algal bloom north of Finnmark; credit: ESA



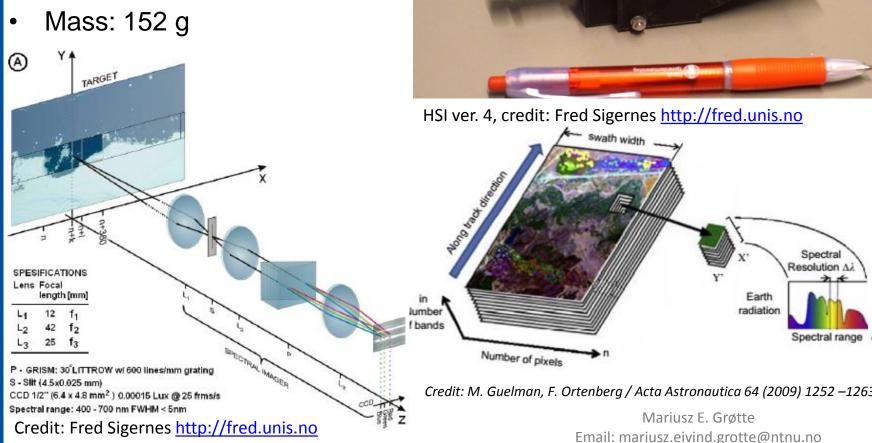
Salmon (est. 900 tonnes) death; credit: IFinnmark





Horizontal spatial scale

Vision: the Robotic Platform Architecture



- High spatio-temporal resolution for oceanographic observations
- De-conflicting time and space is critical
- Observations in hours not days → space segment

NTNU

Hyperspectral Camera

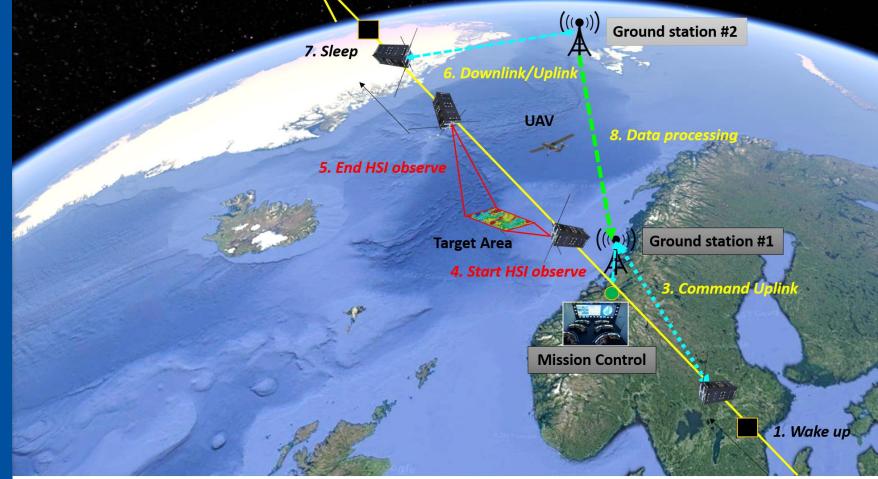
- Push-broom line scanner
- Spectral range: 400-900 nm
 - usable: 100 bands
 - spectral resolution of 5 nm
- Size: 1/3 U

Micro lens hyperspectral hybrid imager V4

Spectral range: VIS/NIR

rating: 600 lines/mm lit width: 25um lit height: 3mm ront lens: 16 mm: f/4

etector: uEye UI-3360CP-NIR-GL Rev. 2

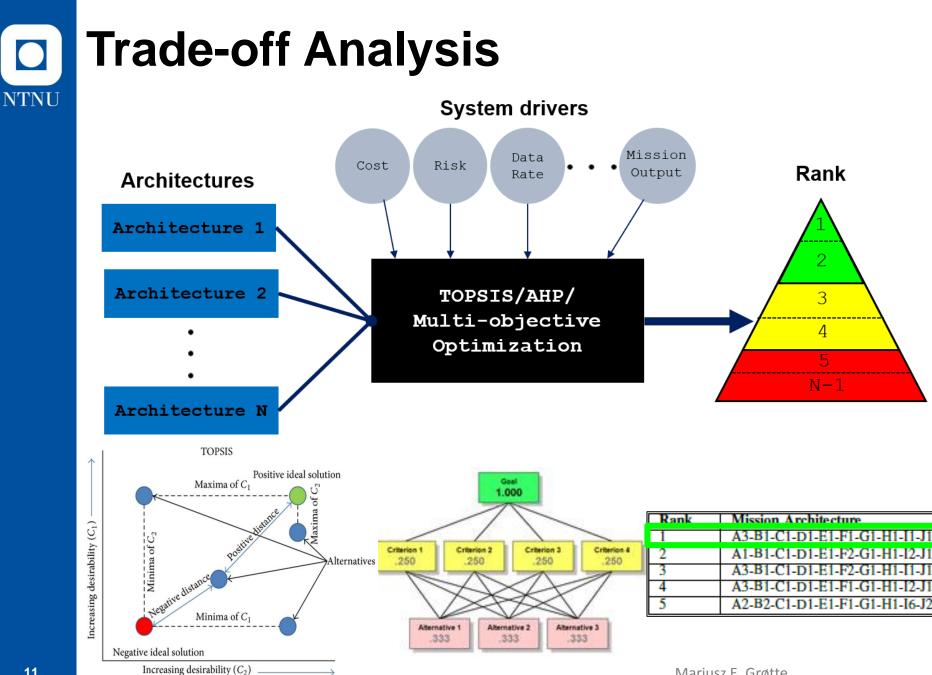

ze: 47x58x130 mm (wxhxL)

perture: 9.5 mm ollimator: 30 mm ield lens: 10mm amera lens: 25 mm

ass: 152g

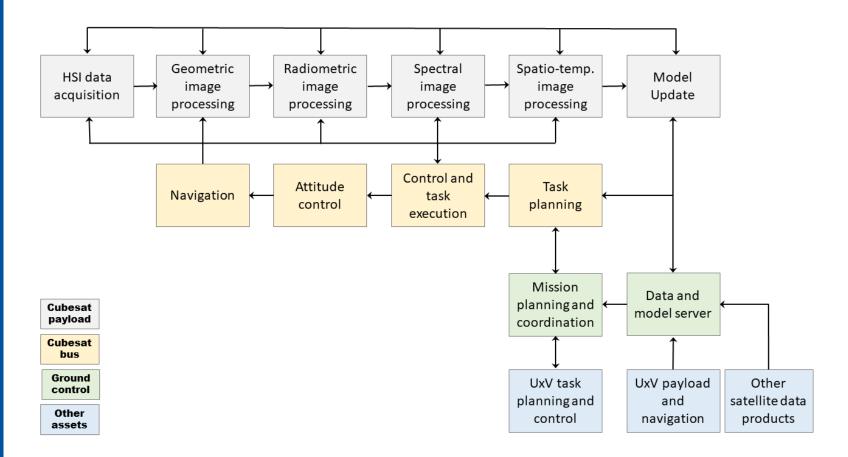
CONOPS

Satellite is in retrograde **near-polar orbit** and is operational for imaging at about **1 min** during one direct overhead pass per day. Constellation is designed with baseline **2 revisits** per day. Norway has a large coastline and substantial responsibility for important ecosystem observations and maritime surveillance.

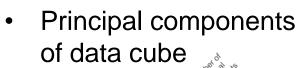

10

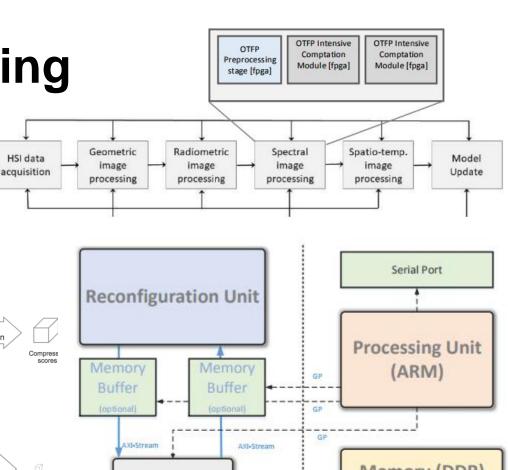
Mission Requirements

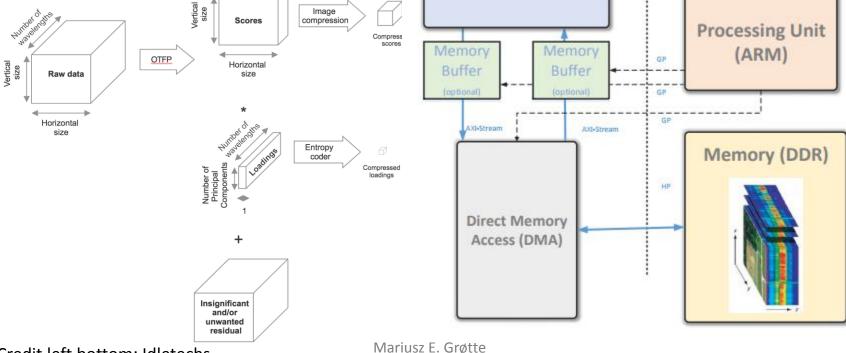
Level 0 mission statement


NTNU SmallSat mission will demonstrate proof-of-concept oceanographic observations through dedicated and targeted narrow field-of-view hyperspectral imaging

S/C shall successfully launch, deploy and initialize operations in LEO Level 0 – minimum success criteria	Shall enable observe on meso- scale over ocean target area of about 50 x 30 km, giving a swath width of 30 km in the Atlantic ocean at viewing angle of <20 deg	Shall identify and track a ocean target area with 3 passes per day with 1 pass being direct overhead with >3 min duration of pass	Shall take images of target with 100 spectral bands in VISNIR that will include at least 3 detectable signature of scientific/ oceanographic content	Ground user shall be able to download at least 10 on-board compressed images and telemetry data for direct interpretation during >2 min/day with coverage of approx. 3000 km slant range and ground elevation <30 deg	Shall be operational for at least 3 months days with continuous operations mission updates during peak-season and target localization temporal resolution of between 1 day and 1 year		
Shall detumble after separation with full mission operations support in <3 weeks	Sampling of target area shall not deviate more than 0.1 % error of 30 m Target area shall	Target shall be observable by given movement (westwards) cross- track on previous/subseque nt pass and min.	Shall have 100 spectral bands/channels available in 400-750 nm range	Mission data shall be downlinked in max. 1 orbit after mission operations with >3 min pr. pass Model update of mission data shall	Space segment agent shall be coordinated with other robotic agents indirectly with response time of maximum 2 hrs Space segment shall		
Ground shall identify S/C, generate TLE and	have scientific content in an	elevation angle of 10 deg relative to S/C cross-track	oceanic/natural/biologic al content shall have spatial resolution of	happen in-orbit with geometric calibration	enable updates on mission planning		
estimate its initial state upon deployment from P-POD with 10% deviation to nominal orbit	average 1:72 orbits and at least probability of detection of 1.39 % for 1 pass	Shall pass same the target location at same local time every day with drift less than 100 m	<100 m as well as maximum reflectance and brightness to distinguish content spectrally	Shall have HSI operations and ground station availability in 1 pass with immediate image reconstruction	Space segment shall support re-scheduling of planned events by ground command		
Ground station shall track S/C over 6 months	Target shall have >5 % of its area covered by relevant content including at least	per day westwards Observation of target shall be enabled globally	Faintest detectable signature that is set to observe must be at SNR of 100:1	and response Shall downlink data to at least 1 ground station in Norway			
after deployment Level 1 mission requirements	$\Delta z = 0.5$ m ocean depth in summer season	with uplink on mission plan 2 orbits prior to observation	Shall avoid clouds, saturation effects and sunglint	Mariusz E. Grøtte Email: mariusz.eivind.grotte@ntnu.no			

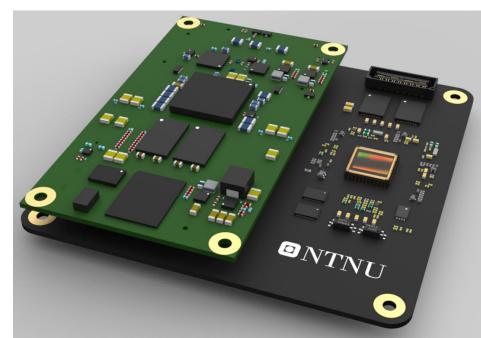

HSI Processing & Control



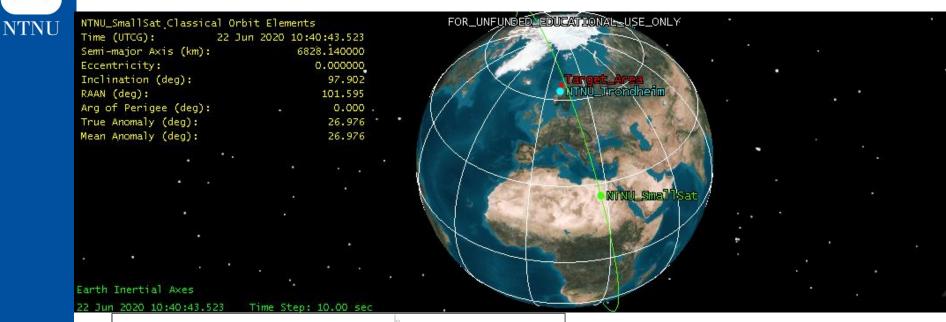


Data Processing

- Spectral + spatial + geometric compression
- OTFP



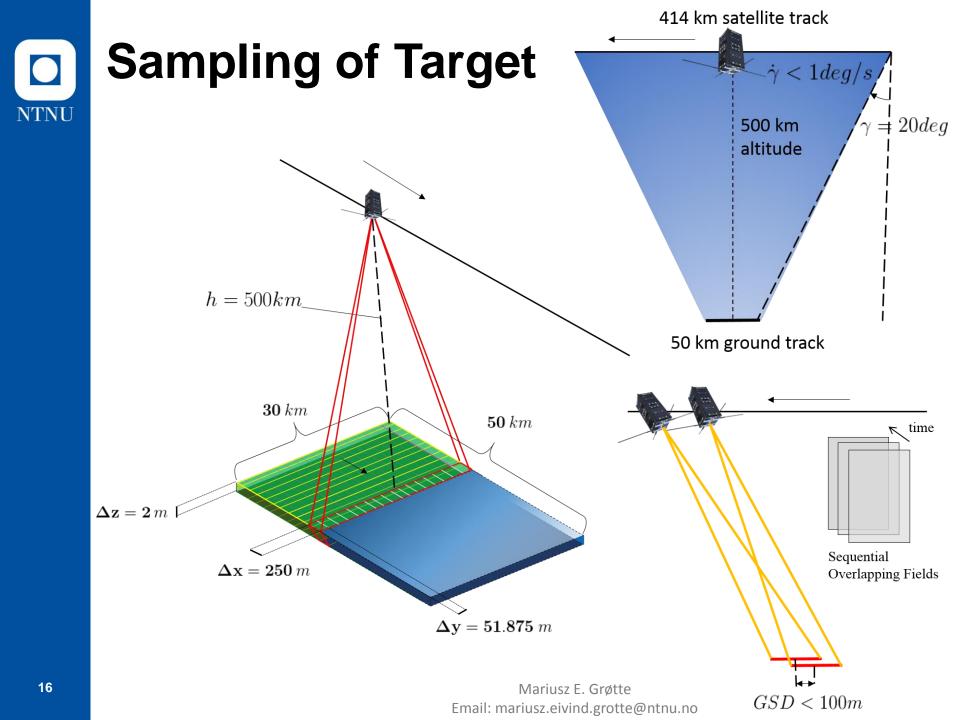
Email: mariusz.eivind.grotte@ntnu.no

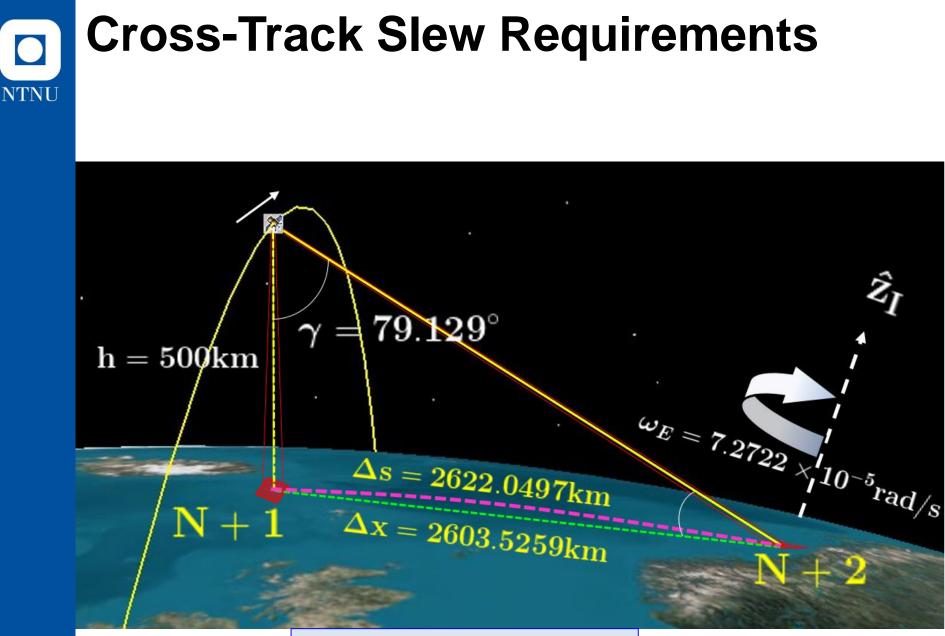

Payload Electronics

- ARM/FPGA Computer
- Based on Zynq7000 FPGA
- Inexpensive automotive parts
- NIR enhanced image sensor
- Power consumption < 3W
- Up to 100fps, 12-bit resolution
- Supports multiple protocols
- Low cost

Render of version 1, currently in development Credit: Julian Veisdal @ Moonwearables Inc.

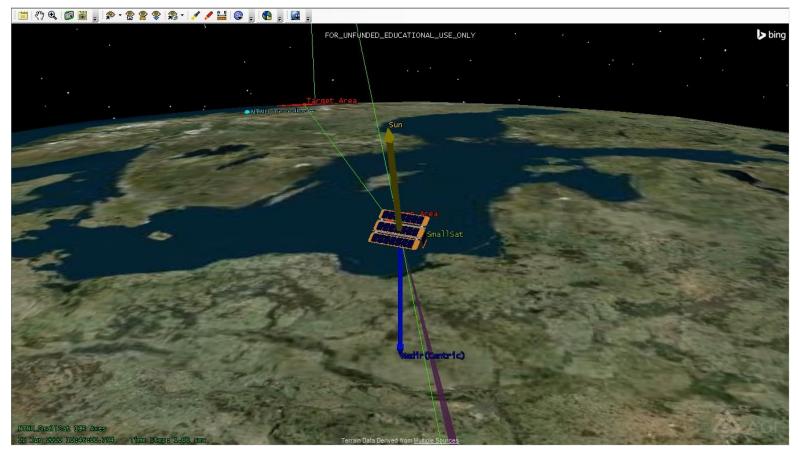
Mission Analysis




	H H	15:00		8:00		H		H 000000000000000000000000000000000000	H 3:00	Н	H	Н	H 9:00
Jun Mon 22 2020					Time (UTCG)							
	Access	St	art T	ime (UTCG)		1	Stop Ti	me (UTCG)		Dui	ration	(sec)
	1	22 Jun	2020	09:1	3:28.14	11	22 J	un 2020	09:23:47	.520		6	19.379
	2	22 Jun	2020	10:4	5:33.19	2	22 J	un 2020	10:56:40	.450		6	67.258
	3	22 Jun	2020	12:1	9:18.86	59 :	22 J	un 2020	12:29:26	.733		6	07.864
	4	22 Jun	2020	13:5	5:47.71	17 :	22 J	un 2020	14:01:19	.933		33	32.156
	5	22 Jun	2020	21:5	6:07.88	31 3	22 J	un 2020	22:01:49	.471		34	41.590
	6	22 Jun	2020	23:2	8:08.79	3 3	22 J	un 2020	23:38:16	.484		6	07.691
	7	23 Jun	2020	01:0	0:56.12	24 :	23 J	un 2020	01:12:09	.342		6'	73.218
	8	23 Jun	2020	02:3	3:48.85	54 5	23 J	un 2020	02:44:15	.283		63	26.429
	9	23 Jun	2020	04:0	6:27.79	91 3	23 J	un 2020	04:15:06	.699		5:	18.909
	10	23 Jun	2020	05:3	8:23.84	1 :	23 J	un 2020	05:45:41	.883		4:	38.042
	11	23 Jun	2020	07:0	9:18.40)5 :	23 J	un 2020	07:17:17	.005		4'	78.600
	12	23 Jun	2020	08:4	0:01.73	39 3	23 J	un 2020	08:49:46	.440		5	84.701
Global Statistics													
Min Duration	4	22 Jun	2020	13:5	5:47.71	7 3	22 J	un 2020	14:01:19	.933		3	32.156
Max Duration	7	23 Jun	2020	01:0	0:56.12	24 :	23 J	un 2020	01:12:09	.342		6'	73.218

h=500 km, duration = 11.12 min

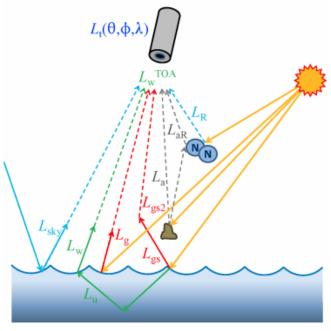
Mariusz E. Grøtte Email: mariusz.eivind.grotte@ntnu.no



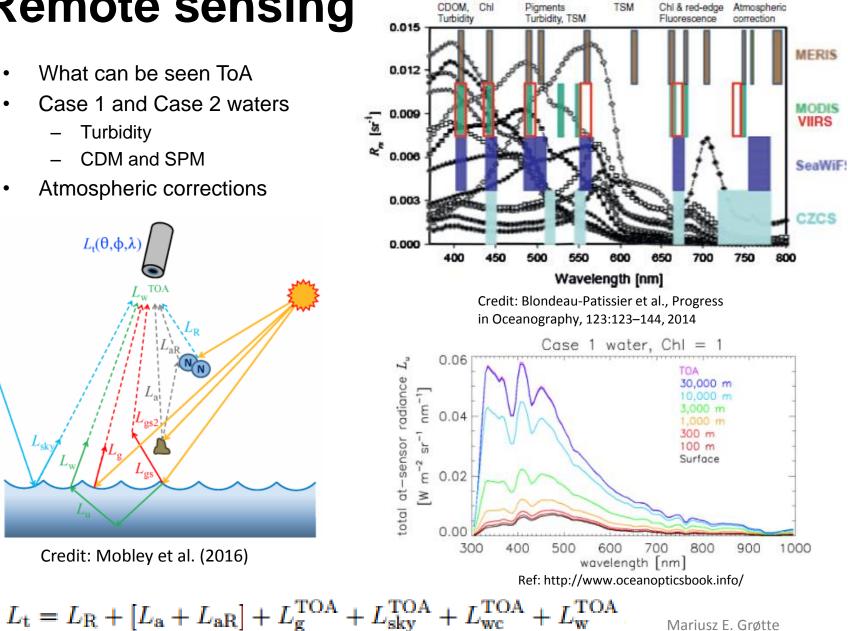
 Θ = 20 deg wrt. Nadir along-track $\dot{\gamma}$ = <1 deg/s, $\dot{\theta}$ = 0.7361 deg/s

Slew Maneuver

- YPR sequence
- Constrained optimal slew maneuver
- $\dot{\gamma}_x = 1$ deg/s, adaptive step size control



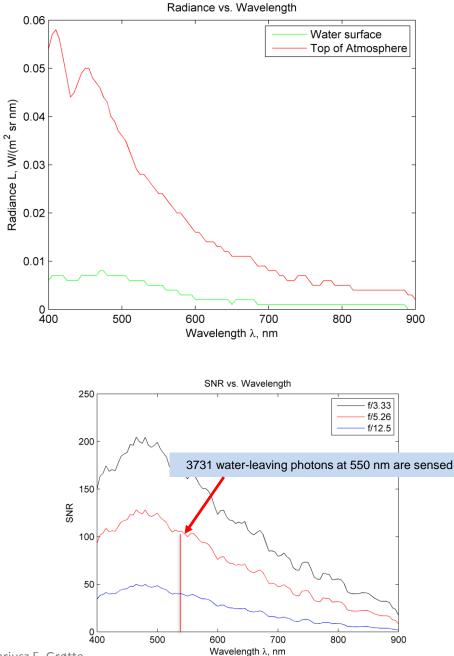
Mariusz E. Grøtte Email: mariusz.eivind.grotte@ntnu.no

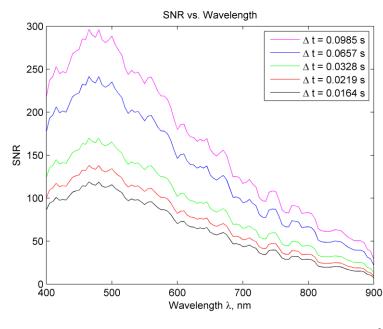

NTNU

Remote sensing

- What can be seen ToA
- Case 1 and Case 2 waters
 - Turbidity
 - CDM and SPM
- Atmospheric corrections

Credit: Mobley et al. (2016)

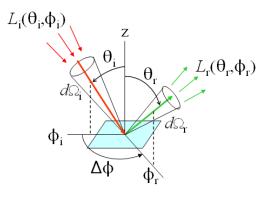

Mariusz E. Grøtte Email: mariusz.eivind.grotte@ntnu.no

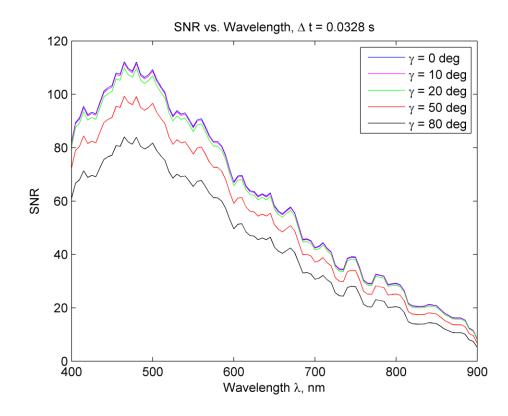

NTNU

NTNU

Sensitivity

Humidity	56%
Solar Zenith Angle	45 ⁰
Surface wind speed	6 m/s
Viewing angle	0 ⁰
Chl-a concentration	1 mg/m ³
Water	Case 1
f ₀	50 mm
f/#	5.5
h	500 km
Δχ	250 m





Viewing Angle Effects

• Lambertian BRDF: $p(\phi) = \frac{2}{3\pi^2}(\sin\phi + (\pi - \phi)\cos\phi)$

- Slant range increases
 - Spatial resolution worsens
 - Added distortions
- Less water-leaving photons reaching sensor
- Exposure time matters for GSD

	Radiometric				1	Spatial	Spectral	Optical	Radiome	etric		
Input: Numb	er of Pixels and I	Detect	tor Pitch 🔻				Spectra	l Band Ed	ge Wave	lengths		
Field of View			Number of P	ixels					Low: 0	.400000	(um)	
Horizontal Half Angle	45 deg		Horizontal:	250.000000					High: 0	0.900000	(um)	
Vertical Half Angle	45 deg	T.	Vertical:	51.000000								
			, [Numbe	er Of Inte	rvals:	100.000000		
Related Detector Parar	neters		Instantaneo	us Field of View			S	Spectral S	hape: l	Jse Optical and	Radiometr	ric Respons
Input: F-Numb	er and Focal Lengt	h	•			E	OIR Atmo	sphere M	lodel			-
		ſ	Image Quality			[Atmosph	nere Mode	s	Atmosph	ere Paramet	ters
F/#:	4.000000		Diffraction Li	mited 🔹			C Atm	osphere O	ff	Aeroso	Models:	4aritime
Effective Focal Length:	0.1600000	(cm)	RMS Wavefront Error:	0	(waves)		-	le Atmosp			Visibility: 2	23.0000
Entrance Pupil Diameter:	5.500000	(cm)	Data File:	2dGaussian4Sto	dDev64x6		MOD	TRAN Atn	nosphere	1	Humidity: 4	1 5.8000
			Data File Sampling:	5.000000	(um)							
				5.000000	(cycles	/um)				ОК	Cance	
			Longitudinal Defocus:	0	(mm)		Tail ten 180	tuto pilj	-		- 37	· · · ·
Optical Transmission			Diffraction	n Wavelength					-	- Walter-P		
Band Effective	/alue		Band C	Center	•							
									and the second	and the second		

Volumetric area, credit: AGI

Aag

Mariusz E. Grøtte Email: mariusz.eivind.grotte@ntnu.no

NTNU

Preliminary Data Budget

Estimation of size of one target measurement packet:

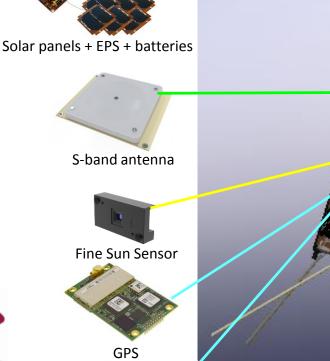
Format	Size
Uncompressed	500×600 pixels \times 100 channels 12 bits/(pixel \times channel) = 360 Mb
Compressed (spectrally)	500×600 pixels \times 20 components 24 bits/pixel = 144 Mb
Compressed (spectrally + JPEG2000)	500×600 pixels \times 20 components 3 bits/pixel = 18 Mb

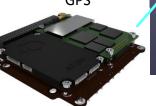
Format	Size	UHF/VHF-band 200 kb/s	S-band 2 Mb/s	X-band 10 Mb/s
Uncompressed	360 Mb	30 min	3 min	36 s
Compressed (spectrally)	144 Mb	12 min	1.2 min	14.4 s
Compressed (spectrally + JPEG2000)	18 Mb	1.5 min	9 s	1.8 s

- Attitude log information @ 100 Hz gives additional 1-2 MB
- Telemetry: 5 Mb

→ Approx. 25 Mbit total

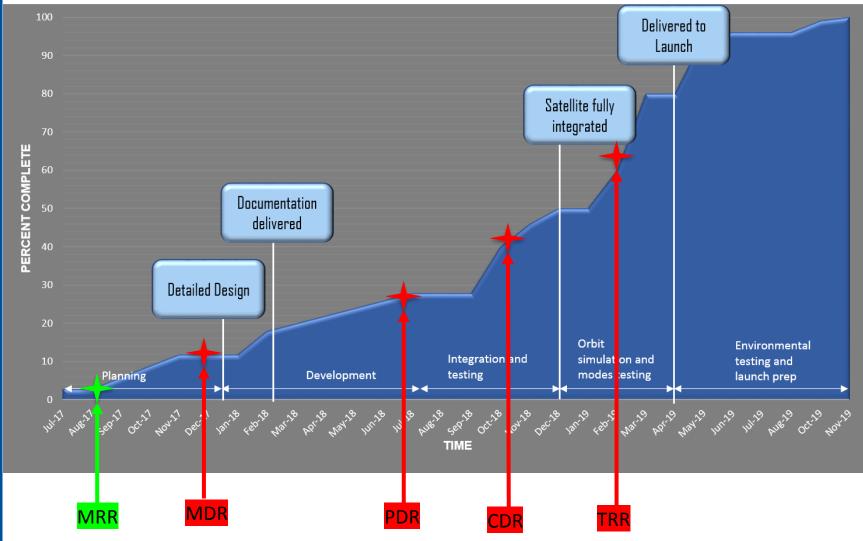
- Time available for downlink: minimum 3 min available in one day with Ground station $\epsilon{=}30^{\circ}$


Potential Satellite Platform


NanoCam C1U

- 3U CubeSat
- Flight Planner
- ADCS
 - Magnetorquers
 - Reaction wheels
 - Fine sunsensors
 - Gyroscope
 - Magnetometers
 - GPS
 - Star-tracker
- S-band patch antenna
- Linux/FreeRTOS
- CAN/I²C/SPI
- (SDR)
- CSP Routing

Mariusz E. Grøtte Email: mariusz.eivind.grotte@ntnu.no


Credit: Gomspace

NanoDock ADCS-6

NTNU

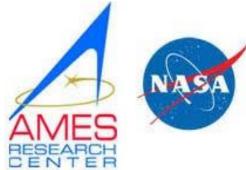
Verification, Validation and Testing

NORSAT Satellite Series

- Norsat-1 (Operational)
 - AIS-payload
 - Langmuir probe for plasma measurements
 - Total solar irradiation instrument
 - S/C bus built by UTIAS SFL
- Norsat-2 (Operational)
 - AIS-payload
 - VDES communication payload to test two-way VHF communication for marine/shipping applications
 - S/C bus built by UTIAS SFL
- Norsat-3
 - Planned and "firm", but currently little official info on its payload and platform.
- Norsat-4
 - Currently phase A study.
 - Our HIS and SDR-proposals will be evaluated as payload candidates.

Conclusions & Future Work

- Currently on mission-design (Phase A)
 - Full architecture will be fully defined
 - Iteration on mission requirements
 - Feasibility studies on HSI payload and slew-maneuver studies
 - Thermal tests to be done (FEA and H/W)
 - Comms. architecture
 - Need to establish feasibility of viewing target at angles (do we get the desired signal?)
 - 6U/3U CubeSat?
- Mission Design Review on 15th December
- HSI payload for UAVs is to be integrated in SmallSat
- If first two missions are successful → a pipeline of SmallSats will support coordinated oceanographic observations.
 - Space segment shall provide higher temporal and spatial resolution.



FFI Forsvarets forskningsinstitutt Norwegian Defence Research Establishment

KONGSBERG

FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

