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Introduction 

 

After the COVID-19 outbreak hit East Asia, Europe and the US with full force, the need for advanced 

and more accurate methods for prediction and control of pandemic outbreaks become urgent. The 

gold-standard in current epidemiological modeling is to use an individual-based model (IBM), where 

individual agents are assigned a behavior pattern which is meant to simulate the society, while 

infection between the individuals is based on probabilities based on observations.  

 

One of the first publications concerning the modeling of the COVID-19 epidemic came from Imperial 

College (Ferguson et al. 2020).  This report describes in detail how the IBM from the team at Imperial 

College predicts the effects of the COVID-19 outbreak in the UK and USA. It also discusses different 

strategies, such as social distancing, which could be implemented to control and mitigate the 

outbreak. Moreover, the report shows a way to control the outbreak through utilizing a suppression 

strategy with an on/off approach to soften the blow on national economy while still avoiding that the 

healthcare system does not become overloaded with patients. Later, several other studies have been 

released using the same or similar modeling frameworks and approach to interventions. Using an 

on/off strategy with repeated actions and random switching times is a suboptimal choice from a 

feedback control point of view since optimality is not addressed. Another concern with this ad hoc 

approach is that, simple control strategies can generate closed-loop stability problems and they can 

also be the root to exponential epidemic growth. In our view, stability and optimality must be explicitly 

addressed when designing control strategies for that inform policy choices. Consequently, our 

approach is to optimize the 

• Choice and combination of policies, i.e. which different groups should be subjected to social 

distancing measures; children, students, workers, elderly etc.  

• The timing of when to start each policy, and for how long they should stay in effect. 

 



  
   

NTNU COVID-19 Taskforce   
 

3 

The main mathematical framework to achieve this goal is optimal control theory for dynamic 

constrained systems, such as model predictive control (MPC) (Borrelli et al. 2017).  An MPC controller, 

when properly designed, can anticipate future epidemic spread and, from this predicted future, 

compute the optimal control actions. For an epidemic model, the control actions will be the optimal 

combination of policies and interventions, as well as their optimal starting time and duration. The 

accuracy of the optimal policy structure is further improved by measuring the number of infectious 

people through extensive testing. This input of experimental evidence allows the MPC controller to 

recompute the predicted policies each time new information is available.   

 

When selecting and designing our computational modeling framework, we have explicitly taken into 

consideration the following aspects: (A) It should be possible to directly test a wide variety of 

interventions, such as partial workplace and school closings, social distancing, and testing with 

subsequent isolation of infected individuals. (B) Each infected person should have a disease-state 

development where the stages have realistic time delays. If a lag in response time is not included, 

we anticipate that all estimated response times to interventions will be markedly wrong. This is 

especially evident for the correct estimation of R, and thus, the capacity to determine how quickly R 

responds to interventions. The mentioned challenges are inherent to most metapopulation-based 

models, whereas an IBM approach is not hampered with such issues. 

 

Guided by the above reasoning, we have developed a complex system modelling framework to 

describe the spreading pattern of COVID-19 in mainland Norway. The model design and build 

features are chosen with the intent that it can be used to carefully assess a multitude of relevant 

intervention strategies and predict optimal scenarios for disease mitigation and control. Briefly, the 

NTNU network-control model is based on three interacting layers of description: 

 



  
   

NTNU COVID-19 Taskforce   
 

4 

1. At the basal layer, we generate a separate IBM using complex network theory for each 

Norwegian municipality. The features of the model’s layers and each individual all adhere to 

high-resolution demographic data specific for the respective municipality. The disease-state 

of each individual follows an epidemiological SEIR-type model. 

2. The intermediate level consists of a nonlinear model predictive controller (MPC) for state 

feedback. The NMPC is designed using an adaptive low-fidelity SEIR model to approximate 

the governing dynamics of the IBM. The model-based controller allows for determination of 

optimal intervention strategies for each municipality, in addition to allowing for uniform 

control of a sub-set of municipalities forming a region or even uniform control of all 

municipalities at a national level. 

3. At the highest level, municipalities are connected by the movement of people due to regular 

activities, such as commuting, and intermittent activities. 

 

The approach of combining an IBM with optimal nonlinear control in studying epidemics allows the 

fine-tuning of intervention strategies which is impossible with the widely used application of ad hoc 

measures. Our total model contains approximately 5 million people and simulates spreading 

dynamics through social interactions in layers such as households, schools and workplaces.  
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Layer 1: Stochastic IBM network with SEIR epidemiologic transmission dynamics 

 

Structure of the municipality network IBM  

We generate a high-fidelity IBM for a single municipality by creating a set of households 

corresponding to the population Nm of that municipality. Each household consists of one or several 

nodes, to each of which we assign a list of attributes:  

1. Age 

2. Domicile 

3. Layer memberships / group membership within layers (see Fig. 1) 

4. Disease state (see Fig. 2), and date of last change in disease state 

5. Disease test state  

The model has 9 layers. Layer a)-h) each consist of many groups, and each individual is only member 

of one of these groups. Further, an individual can only be present in a single of the layers b)-h). The 

layers are: a) Household, b) Day-care, c) Primary school, d) Secondary school, e) High school, f) 

Workplace, g) Nursing home, h) Hospital, and i) Generic contact network. A group is designed as a k-

clique, i.e. where all members of a group are in contact.  The assignments that form the IBM contact 

network are constrained such that known high-resolution demographic data for each municipality is 

matched:  

1) The household layer consists of separate households with a size and age distributions that 

follow demographic data for that municipality.  

2) The number of schools, type, and their student populations are based on demographic data.  

3) The number of day care facilities is based on demographic data.  

4) The number of nursing homes and their population sizes are based on demographic data.  
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5) If a household has multiple children in e.g. day-care age, these children are assigned the 

same day-care. Similar for primary and secondary schools. For high-school age, the 

assignment to school unit is random. 

6) In the work layer, the number of companies and their sizes are based on demographic data. 

Note that this layer is intended to represent spread between co-workers. For professions 

with large amounts of exposure to the general public, contacts with customers are 

represented through the generic contact network. 

7) The generic contact layer is designed to capture heterogeneity in a person’s daily contact 

patterns. We include two different modes: (A) For young (< 20) and elderly (80+) we assign 

number of contacts following a normal distribution, whereas the remaining age groups are 

assigned contacts following a combination of a normal and a power law distribution. The 

latter generates larger contact heterogeneity. 

8) Using SSB statistics, adults with different work and household municipalities are assigned 

work locations in the correct municipality.  

9) When a person is committed to a hospital, they are removed from their domicile (household 

or nursing home). 

Fig. 1 Structure of network IBM. (Left) Possible domicile indicated by person figure. Named circles show available 
layers that a person can be member of. (Right) Illustrative example of resulting connection network between 
individuals caused by shared group membership in different layers: household (blue), primary school (red), day 
care (orange), work (green) and generic (pink). 
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10) When an infected person manifests a symptom, is confirmed COVID-19 positive, or an 

asymptomatic person is confirmed COVID-19 positive, the model assumes they will self-

quarantine from activities in all layers except their domicile. 

 

All individuals participate in the generic contact network, which is designed as a random time-

dependent scale-free network to capture heterogeneity in contact patterns. A new instance of this 

network (per municipality) is generated every day. Except for the generic contact network, each 

grouping in each layer is represented as a k-clique, where every individual is connected to all others 

in the group, thus representing a well-mixed group. Fig. 1 shows a schematic of the IBM layers inside 

which there are smaller groups (left panel) and a simplified example of a possible resulting contact 

network (right panel).  

 

The probability of infecting depends on which layer the contact is located. Within a layer, all 

members of a single group have a constant probability of infecting other members of that group. 

The specific values used for each layer are detailed in Table 1. 

 

SEIR-type epidemiologic dynamics  

Each individual in the IBM model is either healthy, in various states of infection, or recovered from 

the disease: Susceptible (S); Exposed (E); Infected, asymptomatic (Ia); Infected pre-symptomatic (Ip); 

Infected, symptomatic (Is); Hospitalized (H); Intensive care (ICU); Recovered (R); or Dead (D).  

 

The different states and their possible transitions are captured by the state-transition schematic of 

Fig. 2. The direct transition from Is to D captures the disease trajectory for some people in nursing 

homes. The transition from S to E is governed by disease transmission probabilities in the IBM 

contact network. After an individual is infected from a neighbor in the contact network, the SEIR-

type dynamics of that individual’s disease state (onward from E) are governed by stochastic 
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processes with appropriate waiting times according to empirical data for COVID-19. We continually 

update our parameter estimations given the daily update in disease state numbers for Norway by 

region. 

 

At each time point, an individual will store four points of information about their progression 

through the SEIR states: current state, date of last change of state, next state, and date of next 

change of state. Each day, the model updates the state as needed. Upon entering a new state, the 

model selects the following state according to the probabilities and waiting times specified in Fig. 2 

and Table 1. Once the next state is determined, the duration for which the individual will remain in 

the recently entered state is generated according to that state’s specific λ, and the date of next 

change is set accordingly.  

 

Note that our SEIR-model uses age-stratified transition rates, where the age of an individual decides 

which of the age groups that individual is part of. Table 1 shows the rates used for the different 

transitions in Fig. 2. 

 

Fig. 2 Block diagram showing schematic of the SEIR-type epidemiological state model for each individual 
in the IBM. Solid lines show transitions currently active in the model. The dotted line indicates current 
uncertainty about long-term COVID-19 immunity. Starred parameters indicate age dependent values. 
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Implementation of intervention measures 

A high-fidelity IBM allows for the implementation of detailed interventions, where contact patterns 

of a selection, or all, of the individuals may be modified. It is thus straightforward to conduct 

computational experiments where some or all schools are closed or partially closed, various levels of 

social distancing is included, or testing and vaccination is administered. The most basic intervention 

strategy consists in locking down various IBM-layers. How this is implemented in detail depends on 

the layer:  

1. For day care facilities the layer is disabled in its entirety. Similarly for secondary schools and 

high schools. 

2. For primary schools, a shutdown is implemented separately for grades 1.-4. and grades 5.-7., 

allowing for the opening of grades 1.-4. Independent of the other grades. 

3. In the work layer, a shutdown is not complete – instead, a fraction of cliques intended to 

represent workplaces where work-from-home is feasible, are disabled.  

4. In the random contact layer, lockdown is implemented by setting an upper bound on the 

number of possible daily contacts for a fraction of the nodes.  

5. The household and nursing home layers are never disabled. 

General social distancing and hygiene measures are represented by a change in the base 

transmission rates of each layer. 

 

Targeted quarantine of individuals 

The quarantining of an individual is represented by disabling workplace, school, and random layer 

spread for asymptomatic and pre-symptomatic individuals put into quarantine, similarly to behavior 

patterns for individuals who self-quarantine when symptoms manifest. Such quarantines may be 

imposed on individuals who test positive, as well as other individuals at high risk of contagion from 

someone who has recently tested positive (such as those in the same household, workplace, or 

school).  
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COVID-19 testing of (sub-) population 

The testing itself is represented by drawing individuals from the symptom-free population 

(susceptible, latent, asymptomatic, pre-symptomatic, or recovered), and returning a positive test if 

they are asymptomatic or pre-symptomatic. Pooled tests are represented similarly, but with 

multiple people (forming a pool) simultaneously tested and all tests marked as positive if any of the 

people in the test pool are in the asymptomatic or pre-symptomatic states. Our IBM implementation 

allows for random selection of individuals for testing, or testing based on a pre-conceived schema. 

 

Base-line testing of IBM with empirical data 

The parameters in the stochastic IBM are treated as fixed, and they are either set from the literature 

or estimated directly from publicly available empirical data, as indicated in Table 1. We determined 

model parameters by fitting the predicted hospitalization rate of our Oslo model to hospitalizations 

for Oslo in the period from March 1st to April 20th. We assume a sudden transition between two 

regimes, with infections following original “unrestricted” probabilities until March 13th. After this, all 

schools and day care facilities close, as do 50% of workplaces. Random contacts are reduced by 75%. 

Infection probabilities in nursing homes and within households remain the same in both regimes.  

Model simulations start in March and continue until June 20th, 2020. 

 

Since the lockdown in Norway occurred in the early stages of the epidemic, the fitting of the IBM 

results to data depends very much on the number of symptomatic infected on the day of lock down 

(March 13, 2020). Thus, for a given parameter set and municipality, we have used a large number of 

simulations to determine the optimal number of infected (Nlock) on this day for the model 

predictions to fit to time series data of number of hospitalized persons. Simulations are 

subsequently conducted by initiation the network with a small number of infections and running the 

code until Nlock is reached. The date is set to be March 13 at this point. Formal model fitting, 
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sensitivity analysis and meta modelling are work in progress. We anticipate that several of the IBM 

parameters can be estimated from other data sources, e.g. from aggregated data from the infection 

tracking application Smittestopp and the large-scale systematic testing regime for COVID-19.  
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Layer 2: Nonlinear model predictive control (MPC) 

Control theory, a subfield of cybernetics, deals with the control of dynamical systems in machines, 

biological processes and engineering. A feedback control system has an output that is controlled to a 

desired state or trajectory by using measurements or observations as feedback signals. The feedback 

signals, if properly designed, will stabilize dynamic systems that are poorly stable or unstable, as long 

as they are controllable.  

 

MPC is an advanced feedback control method that is used to control a dynamic system while satisfying 

a set of constraints on the inputs and the states (Johansen 2011, Borrelli et al. 2017). The objective is 

to satisfy all constraints using a control action algorithm in an optimal manner and to ensure that the 

closed-loop system is stable. MPC relies on a dynamical model of the system, e.g. an SEIR model, which 

is used for dynamic optimization by minimizing a user-specified cost function. This corresponds to 

Layer 2 in our model framework. The parameters of the SEIR model are continuously adjusted 

(adaptive control) by fitting observed time series data to the model using system identification 

methods or other methods for data analysis.  

 

The main advantage of MPC when applied to epidemic models is that, the method allows the current 

timeslot to be optimized while taking future timeslots into account. This is achieved by optimizing a 

finite time-horizon, but only implementing the current timeslot and then optimizing future timeslots 

again, repeatedly. Also, MPC has the ability to predict the future output of the system and take optimal 

control actions accordingly.  As an analogy for the MPC, we can look to board games. Just as with MPC, 

board games (for instance chess) often have the players plan out a series of moves, their strategy, that 

to them seems optimal based on their understanding of the game and predictions of the opponent’s 

possible moves. This series of planned moves are your actions in the prediction horizon. However, as 

you cannot account for all possible outcomes, you might need to rethink your strategy. For every move 

your opponent takes, you will have to adapt to their moves, especially if a move was not incorporated 
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in your current strategy. It is the same with MPC, which only takes one action before it generates a 

new action strategy based upon new information gained. This behavior is effectively a feedback 

control, where future timeslots are used to predict the system behavior or an opponent in chess. A 

major benefit of this approach is that the closed-loop system dynamics will be more robust to model 

inaccuracies and prediction errors as compared to an open-loop strategy without feedback (Nowzari 

et al. 2016). 

 

Nonlinear MPC applied to control of the IBM 

In order to apply MPC to control the epidemic outbreak in an optimal manner (Bussell et al. 2019), a 

high-fidelity individual-based model is used to generate observations, as shown in Fig. 3 (see 

description of Layer 1 for details). The model is adaptive in the sense that observations are used to 

adjust the model parameters by data-analysis methods. The next step is to fit a low-fidelity model of 

SEIR-type to the IBM. This is the Layer 2 modeling approach. Note that the low-fidelity model is only 

used to compute the MPC feedback control law using the governing dynamics of the system. Hence, 

model inaccuracies are acceptable up to a certain level. Moreover, it is well known that feedback 

controllers are robust to model and parameter uncertainties, which gives us confidence in using a low-

fidelity model to implement the MPC controller.  

 

The low-fidelity SEIR model is also used to predict the future states of the system (see Fig. 3), and each 

time new observations are available, the predicted horizon and control actions are updated 

accordingly using the latest information. This process is illustrated in Fig. 4. The computed control 

signal is an optimal decision strategy in the form of a series of police, which is fed back to the high-
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fidelity model for verification of the strategy. Consequently, the resulting system is a feedback loop 

where we allow for human-in-the-loop (HITL) actions represented by an on/off approval switch. The 

green dotted line in Fig. 4 are the future observed number of patients in intensive care. The MPC 

algorithm does not know the green line in advance so it uses the SEIR model to predict the number of 

patients in intensive care, illustrated by the red line. Hence, based on the red line the MPC computes 

the optimal polices for the present and the future times. This process is repeated at each time instance 

and the result is a nonlinear feedback controller, which take the future states into consideration when 

computing the optimal policies. The optimal policies are illustrated by the black line in Fig. 4 

 

MPC control objectives and constraints 

The control objective decides how much the optimization algorithm is penalizing the states and 

control inputs. A wide range of realistic epidemic control objectives can be combined, such as 

limitations on maximum number of hospital beds in simultaneous use, and the level and duration of 

societal disruptions.   

Fig. 3 Block diagram showing the MPC control and control objectives used to specify the optimization 
problem. The data analysis block is used to fit the model in the MPC controller to the “real world” by 
parameter adaptation. 
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The mathematical equivalence of this is the cost function  

 

where Q > 0, Qend > 0, and r > 0 are the cost function weights, T is the prediction horizon, and 

 

denotes the MPC state vector and u is the control input (optimal policy to be computed). The 

compartments are the number of individuals classified as susceptible (S), infectious (I), hospitalized 

(H), intensive care (C) and recovered (R). Consequently, the optimal policy can be computed by solving 

the nonlinear optimization problem 

 

subject to the ODEs 

Fig. 4 Example of discrete MPC scheme showing the predicted (red) and measured (green) 
outputs along with the predicted (black) and past (yellow) control input policies for a 12-
month horizon. Our ability to adjust policies according to external constraints, such as ICU 
capacity is indicated by the blue line.  
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and the constraints 

 

with KH
cap < 1 and KC

cap < 1 as constants chosen such that the maximum hospital and intensive care 

capacities not are exceeded. Since the IBM is stochastic and the nonlinear MPC controller is derived 

using a deterministic approach, it is necessary to tune the values of KH
cap and KC

cap such that all 

solutions of the stochastic model satisfy the constraints. 

 

Uncertainty compensation 

The SEIR model in the MPC controller is used for dynamic optimization and prediction of future states. 

A neat feature of feedback control is that it makes the closed-loop system robust for disturbances, 

parametric uncertainty and structural uncertainty for instance caused by stochastic processes. 

However, it is important to keep the uncertainty at a minimum by parameter adaptation. The main 

tool for this is system identification (SI) where data obtained from hospitals and testing of individuals 

are used to estimate the parameters soon as they are available. The result is an adaptive low-fidelity 

SEIR model which can be used for optimal feedback control. 

 

In addition to parametric uncertainty it is important to compensate for drift due to the stochastic 

behavior and model uncertainty. This is done by adding an integral state to the feedback controller, 
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which minimizes the output error, i.e. the difference of the low- and high-fidelity models (Morari et al 

2012).   

 

Numerical solvers for MPC 

The continuous constrained optimal control problem defined above is turned into a nonlinear program 

(NLP) with discrete decision variables. This is done using direct multiple shooting and a fourth-order 

Runge-Kutta method (RK4). The NLP is formulated and solved every timestep using the CasADi library 

(Andersson et al. 2019) with the Bonmin solver for mixed integer nonlinear programming (MINLP).  
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Layer 3: Region- and nation-level complex network model 

We integrate the municipality models through transport of people: either by regular travel 

(commuting) or by intermittent travel. We identify commuters as the number of people who have 

registered work location in a municipality different from their household municipality, according to 

SSB demographic data. These individuals contribute to the household and generic contact layers in 

one municipality and in the work layer and generic contact layer of the other municipality. 

Intermittent travelers contribute only to the generic contact network in the municipality they are 

visiting. This structure allows us to predict the effects of export and import of infected individuals 

across municipalities or larger regions, as well as the regional effects of individuals having been 

infected abroad.  It also allows us to test the effects and optimization of heterogenous social 

distancing policy regimes, such that for a given time period different sets of policies apply to 

different regions depending on infection pressure and other factors influencing the infection 

dynamics. 

 

Our network IBM allows for integration with actual transit data between different municipalities. At 

the current time, we do not have access to transit data from major Norwegian mobile phone 

network providers. Since many travel restrictions have been in place and some are still present, we 

do not believe this will change the patterns we have uncovered. However, this is an extension we 

are looking into for the near future. When travel restrictions or recommendations are becoming less 

constraining, we will be dependent on such transit data to be able to make robust 

recommendations. 

 

 

 

  



  
   

NTNU COVID-19 Taskforce   
 

19 

Table 1. Parameters used 
 
 

  

Model parameters Symbol Value Function Source
SEIR-epidemics

Probability of infection β ---- Network effect
Days incubation time λE 1 Fixed

Days spent pre-symptomatic λIps 5 Poisson FHI model, adjusted for reduced incubation time

Days symptomatic before recovery λIsR 5 Poisson FHI model

Days symptomatic before hospitalization λIsH 6 Poisson Data from HSØ

Days symptomatic in nursing home before death λND 10 Poisson Data from HSØ
Days in hospital before recovery (no ICU) λHR 8 Poisson Data from HSØ

Days in hospital before ICU λHI 4 Poisson Data from HSØ

Days in ICU before recovery λIR 12 Poisson Data from HSØ

Days in ICU before death λID 12 Poisson Data from HSØ

Days asymptomatic before recovery λIaR 8 Poisson FHI model adjusted for reduced incubation time

% exposed developing symptoms PI 50 Bernoulli

% symptomatic dying outside of hospital PND Bernoulli
nursing home residents 70-79 years 26 Adjusted to Norwegian hosp. death rates, Verity et al
nursing home residents 80-89 years 42 Adjusted to Norwegian hosp. death rates, Verity et al

All others 0
% hospitalized dying PHD Bernoulli Verity et al, Lancet, 2020

0-9 years 1.61 e-3
10-19 years 6.95 e-3
20-29 years 3.09 e-2
30-39 years 8.44 e-2
40-49 years 0,161
50-59 years 0,595
60-69 years 1,93
70-79 years 4,28

80+ years 7,8
% symptomatic being hospitalized PIsH Bernoulli Verity et al, Lancet, 2020

0-9 years 0
10-19 years 0,048
20-29 years 1,04
30-39 years 3,43
40-49 years 4,25
50-59 years 8,16
60-69 years 11,8
70-79 years 16,6

80+ years 18,4
% hospitalized needing ICU PHI 30 Bernoulli Fitted to FHI ICU numbers

% not developing immunity PRS 0 Bernoulli

Individual-based network model
Infectiousness in Day Care 0,015% Bernoulli estimated IBM fit to Norwegian clinical data

Infectiousness in Primary School 0,005% Bernoulli estimated IBM fit to Norwegian clinical data
Infectiousness Secondary School 0,015% Bernoulli estimated IBM fit to Norwegian clinical data

Infectousness High Scool 0,015% Bernoulli estimated IBM fit to Norwegian clinical data
Infectiousness Household 30%% Bernoulli estimated IBM fit to Norwegian clinical data

Infectiousness Work 0,015% Bernoulli estimated IBM fit to Norwegian clinical data
Infectiousness Nursing Home 20,0% Bernoulli estimated IBM fit to Norwegian clinical data

Infectiousness Generic Contact 0,75 % Bernoulli estimated IBM fit to Norwegian clinical data
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