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Introduction

Learning Objectives

The main learning objectives associated with these slides are to:
I Understand why regular tests may be imperfect
I Be able to explain what the proof test coverage (PTC) is
I Be able to set up analytical formulas for PFDavg

I Be able to explain how analytical formulas are adapted for partial
testing

I Be able to explain some main principles for how partial testing is
physically implemented

I Explain how the partial test coverage (PST) is influenced by how the
partial testing is physically implemented

I Be able to determine the PST from OREDA data
I Be able to apply checklist to determine PST
I Be able to suggest how imperfect testing can be solved using

Multi-Phase Markov (new)
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Background

Assumptions Made for Perfect Testing

Many of our analytical formulas developed for PFDavg assume perfect tests.
This means that:
I The proof test conditions are identical to the demand conditions
I All DU failures are revealed during the test, and no new ones are

introduced during the test itself
I Repair is perfect, meaning that the channels achieve an as good as new

condition.

Therse are not realistic, but in some cases realistic enough. When the
assumptions seem too unrealiztic, we consider the test as imperfect.
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Background

Spli�ing the Failure Rate

Under the imperfect test condition, we may distinguish between:

(a) DU faults that can be revealed by the proof test (r-faults), denoted by failure rate λ
(r)
DU

(b) DU faults that cannot be revealed by the proof test (nr-faults), denoted by failure rate
λ
(nr)
DU

The spli�ing of failure rate may be illustrated as below.

1 2

r-faults nr-faults

The PFD as a function of time can be illustrated as follows:

PFD(t)

Time

PFD(nr)(t)

PFD(r)(t)

PFD(t)

0 2ττ 3τ 4τ 5τ
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Background

Full Renewal when Imperfect Testing

The non-revealed failures may remain hidden over the whole life of the system,
unless a demand is experienced or the system is fully renewed during a scheduled
overhault.

The e�ects of regular overhauls on the PFD may be illustrated as below.

PFD(t)

Overhaul

Time0 t1 t2 t3 τ
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Background

Proof Test Coverage

The fraction between revealed and non-revealed can be expressed by the
proof test coverage (PST):

Z PST coverage is defined as:

PTC =
λ(r)DU

λ(r)DU + λ
(nr)
DU

=
λ(r)DU
λDU

A proof test is said to be perfect when PST= 100% , whileimperfect when PST
< 100%.
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Background

Proof test coverage

This means that the rate of r-failures and nr-failures can be expressed by
the PTC and the DU failure rate.

λ(r)DU = PTC · λDU

λ(nr)DU = (1 − PTC) · λDU
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Modeling of Imperfect Testing

Modeling of PFD with Imperfect Testing

Modeling of PFD may be done by:
I Time-dependent PFD calculations
I Average PFD

With time-dependent calculation, it is possible to achieve the socalled “saw
tooth” curve, which will have increasing heith of each peak as the time goes
by. Time-dependent solution may be found by:
I Numerical integration
I Multi-phase Markov models
I Simulation in combination with RBDs, FTs, or PetriNets.

In this chapter, the main focus is on determining Average PFD based on
analytical formulas.
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Modeling of Imperfect Testing

Analytical Formulas: Single System

We start with a single system subject to imperfect proof test with interval τ
and overhaul with interval τ̃ . In this case, it is easy to obtain the PFDavg,
considering the virtual items “r-faults” and “nr-faults”:

PFDavg = PFD(r)
avg + PFD

(nr)
avg

≈
PTC · λDUτ

2
+

(1 − PTC)λDUτ̃
2

The repair-time has been disregarded here.
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Modeling of Imperfect Testing

IEC 61508 Approach: Single System

It is not straight forward to develop analytical formulas for koon using
reliability block diagrams. It is therefore suggested to apply the approach
suggested in IEC 61508 (part 6).

Recall the basic assumptions for analytical formulas in IEC 61508 for a
single system:

PFDavg ≈ λD,G · tGE

where λD,G = λD and

tGE = tCE =
λDU
λD

(τ
2
+MRT

)
+
λDD
λD
·MTTR
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Modeling of Imperfect Testing

IEC 61508 Approach: Single System

When imperfect testing is introduced, we simply modify the equivalent mean
downtime (tGE) to recognize that nr-faults and r-faults have di�erent downtime.

tGE = tCE =
λ(r)DU
λD

(τ
2
+MRT

)
+
λ(nr)DU
λD

(
τ̃

2
+MRT

)
+
λDD
λD
·MTTR

Here, τ̃/2 +MRT is the mean downtime of an nr-failure, and τ/2 +MRT is the
mean downtime of a r-failure. The formula for PFDavg becomes:

PFDavg = λ(r)DU

(τ
2
+MRT

)
+ λ(nr)DU

(
τ̃

2
+MRT

)
+ λDDMTTR

With PTC included, the formula becomes:

PFDavg = PTC · λDU
(τ
2
+MRT

)
+ (1 − PTC) · λDU

(
τ̃

2
+MRT

)
+ λDDMTTR
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Modeling of Imperfect Testing

IEC 61508 Approach: 1oo2 System

For 1oo2 system, we need to modify two parameters in the analytical formula suggested in
IEC 61508.

tCE , the channel equivalent downtime:

tCE =
λ
(r)
DU
λD

(τ
2
+MRT

)
+
λ
(nr)
DU
λD

(
τ̃

2
+MRT

)
+
λDD
λD

MTTR

or

tCE =
PTC · λDU

λD

(τ
2
+MRT

)
+

(1 − PTC) · λDU
λD

(
τ̃

2
+MRT

)
+
λDD
λD

MTTR

tGE , the group equivalent downtime:

tGE =
λ
(r)
DU
λD

(τ
3
+MRT

)
+
λ
(nr)
DU
λD

(
τ̃

3
+MRT

)
+
λDD
λD

MTTR

or

tGE =
PTC · λDU

λD

(τ
3
+MRT

)
+

(1 − PTC) · λDU
λD

(
τ̃

3
+MRT

)
+
λDD
λD

MTTR
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Modeling of Imperfect Testing

IEC 61508 Approach: 1oo2 System

Recall that IEC 61508 suggests the following formula for a 1oo2 voted
system, when CCFs are included:

PFDavg = 2λ2D · tCE · tGE + βλDU
(τ
2
+MRT

)
+ βDMTTR

With imperfect testing the formula becomes:

PFDavg = 2 [(1 − β )λDU + (1 − βD)λDD]2 · tCE · tGE+

PTC · βλDU
(τ
2
+MRT

)
+ (1 − PTC)βλDU

(
τ̃

2
+MRT

)
+ βDλDDMTTR

where tCE and tGE are given in the previous slide, to avoid a too long formula.
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Modeling of Imperfect Testing

IEC 61508 Approach: koon System

For koon system, we need to modify several parameters in the analytical formula suggested in SIS
textbook (IEC 61508 does not provide generalized formulas for koon systems).

tCE , the channel equivalent downtime:

tCE =
PTC · λDU

λD

( τ
2
+MRT

)
+

(1 − PTC) · λDU
λD

(
τ̃
2
+MRT

)
+
λDD
λD

MTTR

tGiE , the group equivalent downtime of degraded states

tGiE =
PTC · λDU

λD

( τ
i + 1

+MRT
)
+

(1 − PTC) · λDU
λD

(
τ̃

i + 1
+MRT

)
+
λDD
λD

MTTR

where i = 2..(n − k)

tGE , the group equivalent downtime of dangerous state:

tGE =
PTC · λDU

λD

( τ
n − k + 2

+MRT
)
+

(1 − PTC) · λDU
λD

(
τ̃

n − k + 2
+MRT

)
+
λDD
λD

MTTR
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Modeling of Imperfect Testing

IEC 61508 Approach: koon System

Recall that the SIS textbook suggests the following formula for koon system:

PFDavg = λn−k+1D · k · n


n−k∏
i=2

(n − i + 1)tGiE


· tCE · tGE + βλDU

(τ
2
+MRT

)
+ βDMTTR

With imperfect testing the formula becomes:

PFDavg = [(1 − β )λDU + (1 − βD)λDD]n−k+1 · k · n


n−k+1∏
i=2

(n − i + 1)tGiE


· tCE · tGE+

PTC · βλDU
(τ
2
+MRT

)
+ (1 − PTC)βλDU

(
τ̃

2
+MRT

)
+ βDλDDMTTR

where tCE , tGiE for i = 2..(n − k), and tGE are given in the previous slide, to avoid a too long
formula.
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Modeling of Imperfect Testing

IEC 61508 Approach: Verification

Verification of formulas for koon for 1oo2 system: With imperfect testing the formula
becomes:

PFDavg = [(1 − β )λDU + (1 − βD)λDD]2 · 1 · 2 ·


1∏
i=2

(n − i + 1)tGiE

· tCE · tGE+

PTC · βλDU
(τ
2
+MRT

)
+ (1 − PTC)βλDU

(
τ̃

2
+MRT

)
+ βDλDDMTTR

where tCE , tGiE for i = 2..(n − k), and tGE are given in the previous slide. This gives:

PFDavg = 2 [(1 − β )λDU + (1 − βD)λDD]2 · tCE · tGE+

PTC · βλDU
(τ
2
+MRT

)
+ (1 − PTC)βλDU

(
τ̃

2
+MRT

)
+ βDλDDMTTR

which is the same as shown earlier.
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Modeling of Imperfect Testing

IEC 61508 Approach: Verification

Verification of formulas for koon for 2oo3 system: With imperfect testing the formula
becomes:

PFDavg = [(1 − β )λDU + (1 − βD)λDD]2 · 2 · 3 ·


1∏
i=2

(n − i + 1)tGiE

· tCE · tGE+

PTC · βλDU
(τ
2
+MRT

)
+ (1 − PTC)βλDU

(
τ̃

2
+MRT

)
+ βDλDDMTTR

where tCE , tGiE for i = 2..(n − k), and tGE are given in the previous slide. This gives:

PFDavg = 6 [(1 − β )λDU + (1 − βD)λDD]2 · tCE · tGE+

PTC · βλDU
(τ
2
+MRT

)
+ (1 − PTC)βλDU

(
τ̃

2
+MRT

)
+ βDλDDMTTR

which is the same as shown earlier.
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Modeling of Imperfect Testing

IEC 61508 Approach: Verification

Verification of formulas for koon for 1oo3 system: With imperfect testing the formula becomes:

PFDavg = [(1 − β )λDU + (1 − βD)λDD]3 · 1 · 3 ·


2∏
i=2

(n − i + 1)tGiE

· tCE · tGE+

PTC · βλDU
( τ
2
+MRT

)
+ (1 − PTC)βλDU

(
τ̃
2
+MRT

)
+ βDλDDMTTR

where tCE , tGiE for i = 2..(n − k), and tGE are given in the previous slide. This gives:

PFDavg = 6 [(1 − β )λDU + (1 − βD)λDD]3 · tCE · tG2E · tGE+

PTC · βλDU
( τ
2
+MRT

)
+ (1 − PTC)βλDU

(
τ̃
2
+MRT

)
+ βDλDDMTTR

Here, tG2E and tGE are:

tG2E =
PTC · λDU

λD

( τ
3
+MRT

)
+

(1 − PTC) · λDU
λD

(
τ̃
3
+MRT

)
+
λDD
λD

MTTR

tGE =
PTC · λDU

λD

( τ
4
+MRT

)
+

(1 − PTC) · λDU
λD

(
τ̃
4
+MRT

)
+
λDD
λD

MTTR
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Use of Multi-Phase Markov

Multi-phase Markov

Multi-phase Markov models may be used to plot PFD as a function of time, considering the
e�ects of imperfect testing.

The basic approach is as follows:

1. Set up the Markov model for r- and nr-states without including return rates that
involve regular proof tests and overhauls

2. Multi-phase Markov splits the analysis into phases. One phase can correspond to the
time between imperfect proof tests

3. At the end of each phase, it is necessary to define what happens in the transition from
one phase to the next. For this purpose we need a linking matrix (also called “Repair
matrix”)

Example of the set-up of a linking matrix is:

State before linking State a�er linking Probability

An example is provided.
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Use of Multi-Phase Markov

Multi-Phase Markov: 1oo1 System

We consider a 1oo1 voted system that is subject to imperfect testing (with coverage PST interval τ ) and
overhaul (with interval τ̃ , where τ < τ̃ . We want to plot PFD(t) in the interval of the overhaul, and splits
into phases with length τ .

The corresponding Markov model becomes:

0

1

Detected by 
imperfect test

2

Detected by 
overhaulPTC. λDU

(1-PTC). λDU

Each time the calculation reaches a proof test, it is necessary to judge what happens using the linking
matrix. In this case, we suggest:

State before linking State a�er linking Probability

0 0 1.0
1 0 1.0
2 2 1.0
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Use of Multi-Phase Markov

Multi-Phase Markov: 1oo1 System (cont.)

There are several ways to solve the Markov model. One option is to use Grif Workbench,
accessible from http://grif-workshop.com/.

The 1oo1 system was implemented using Grif Markov package with PST= 80% ,
λDU = 1 · 10−6 per hour, τ = 8760 hours, and τ̃ = 10 · τ .
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Partial Proof Testing

Partial Proof Testing

A partial proof test is a similar concept as imperfect testing, but is not exactly the same.

The main characteristics of a partial proof test are:
I The partial test is planned or designed to reveal some, but not all DU failure modes
I The motivation for introducing a partial test is that the test does not interfere with the

normal operation
I The partial test is normally carried out more o�en than the proof test
I A dedicated coverage factor is suggested (we use ΘPST, to distinguish it from PTC)
I In principle, it is possible to include then e�ects of partial proof tests, imperfect proof

tests, and overhauls.

One example of a partial proof test is partial stroke testing of valves. Here the valve is only
subject to a partial movement, in a way that does not require any stop of the production, e.g.
from 0% to 20% closure of a shutdown valve that is normally in open position.

In the following, we use partial stroke testing as the main example.
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Partial Proof Testing

Partial Stroke Testing of Valves

I Partial stroke testing is (automatic or
mechanical) means to used to reveal certain
dangerous failures which are otherwise only
revealed during a function test

I During a partial stroke test, the valve is moved
a certain distance to wards the position which
the valve is intended to operate during a real
demand (usually the fail-safe position)

I The movement may for example be from 0-15%
(of a total of 100% travel distance); that is long
enough to (hopefully) identify whether or not
the valve is stuck, and short enough to avoid
process disturbances

www.franklinvalve.com

Partial stroke testing is introduced to allow earlier detection of (dangerous
undetected) failures.
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Partial Proof Testing

Physical Realization

Partial stroke testing may be physically implemented in the following way:
Manually 

activated PST

SIS
logic solver

PT PT
Pressure 
transmitters

To process
control system

Actuator

Solenoid

Pilot valve

Tank
Pump

Shutdown valve

Pipeline

Manually or automatically 
activated PST

SIS
logic solver

PT PT
Pressure 
transmitters

To process
control system

Actuator

Shutdown valve

Pipeline

Vendor
PST package

The physical implementation may impact the coverage factor.
Rausand & Lundteigen Chapter 11.Imperfect Proof-Testing (Version 0.1) 25 / 48



Partial Proof Testing

Why Partial Stroke Testing?

Full operation of valves o�en require a plant shutdown. This is costly, and
may also increase the risk associated with the required shutdown and
start-up.

Logic solver

Final elementsInput elements

http://www.puffer.com/

Example:
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Partial Proof Testing

Why Partial Stroke Testing?

I Most valves are in open position during normal operation

I While in open position, it is almost impossible to reveal failures by diagnostics

I A failure may therefore be hidden until there is a demand for closing or until a
functional (full stroke) test

I A functional test of a valve o�en requires partial or full process shutdown

I Shutdown and restart of a plant is always associated with some additional
risk.

tτ 2τ

X(t)

1

0

Hidden
failure

SIS failure
Demand
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Partial Proof Testing

Two Main Strategies
In practice, we see that partial stroke testing is introduced to reduce costs or
improve safety.

I Improve safety:
• Partial stroke testing is added while maintaining current interval for full

stroke testing
• PFDavg is reduced compared to having only full stroke testing

I Reduce costs:
• Partial stroke testing is added with the motivation to extend interval

between full stroke testing
• PFDavg is maintains same value as before, but the operating costs are

reduced due to less frequent full stroke testing

With no PST

With PST
With no PST

With PST

Versus
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Partial Proof Testing

Partial Stroke Testing and PFD

The approach to calculate the PFDavg with partial stroke testing included is the
same as for imperfect testing. However, the meaning of the parameters are
di�erent.

We consider a single system, with partial stroke test coverage ΘPST, partial stroke
test (PST) interval τPST, and full stroke (FT) (proof) test interval τ . The
corresponding formula becomes:

PFDavg = PFD(PST)
avg + PFD

(FT)
avg

≈
ΘPST · λDUτPST

2
+

(1 − ΘPST)λDUτ

2

The repair-time has been disregarded here.
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Partial Proof Testing

Partial Stroke Testing and PFD

We consider now a 1oo2 system, with partial stroke test coverage ΘPST, partial stroke test
(PST) interval τPST, and full stroke (FT) (proof) test interval τ .
I The corresponding channel and group equivalent downtimes become: tCE , the channel equivalent

downtime:

tCE =
ΘPST · λDU

λD

( τPST
2
+MRT

)
+

(1 − ThetaPST) · λDU
λD

( τ
2
+MRT

)
+
λDD
λD

MTTR

tGE , the group equivalent downtime:

tGE =
ΘPST · λDU

λD

( τPST
3
+MRT

)
+

(1 − ThetaPST) · λDU
λD

( τ
3
+MRT

)
+
λDD
λD

MTTR

The PFDavg becomes:

PFDavg = 2 [(1 − β )λDU + (1 − βD)λDD]2 · tCE · tGE+

ΘPST · βλDU
( τPST

2
+MRT

)
+ (1 − ΘPST)βλDU

( τ
2
+MRT

)
+ βDλDDMTTR

The repair-time has been disregarded here.
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Partial Proof Testing

Multi-Phase Markov: 1oo1 System

There are several ways to solve the Markov model. One option is to use Grif Workbench,
accessible from http://grif-workshop.com/.

The 1oo1 system was implemented using Grif Markov package with PST= 80% ,
λDU = 1 · 10−6 per hour, τPST = 1460 hours, and τ̃ = 8760 hours.

0

1

Detected by 
partial stroke test

2

Detected by 
full stroke testΘPST. λDU

(1-ΘPST.). λDU
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Partial Proof Testing

Multi-Phase Markov: 1oo1 System (cont.)

Compared to imperfect testing,we run the simulation over several proof test
intervals. We need to introduce two linking matrices, one for what is
happening at each partial stroke test and one for what is happening at each
full stroke test.

At each partial stroke test, the linking matrix is:

State before linking State a�er linking Probability

0 0 1.0
1 1 1.0
2 0 1.0

At each full stroke test, the linking matrix is:

State before linking State a�er linking Probability

0 0 1.0
1 0 1.0
2 0 1.0
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Partial Proof Testing

Multi-Phase Markov: 1oo1 System (cont.)

The results using Grif Markov package becomes:
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Determining Partial Proof Test Coverage

Value of ΘPST

A “perfect” formula for PFDavg cannot compensate for an unrealistic value
of ΘPST. It is therefore important to have systematic process for determining
the ΘPST.

I The question is: How can this value be selected, or determined?

The following slides outlines some useful approaches.
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Determining Partial Proof Test Coverage

Approach I: Use of Historical Data

Historical data, like presented in OREDA data handbooks, can provide useful
insight about the dangerous failure modes. This information may be
complemented by judging of how likely it is that these failure modes can be
detected by partial stroke testing, as shown below.

Failure mode (D)

DOP
PST coverage

Application specific

95%

Expert judgement
& selected PST concept

Failure mode (D)

DOP
% DU failures

35%

Historical data
like e.g. OREDA

Σ

ΔPFD

How much?

How often?

θPST

τPST
&

Valve design

Functional
requirements

PST 
technology

Operational
and environmental

conditions

Safety integrity
requirements

&
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Determining Partial Proof Test Coverage

Approach II: Use of Checklists

Checklists can be an alternative approach to determine the value of the partial stroke test coverage
factor. This checklist which is based on the following paper, see
https://doi.org/10.1016/j.jlp.2008.04.007 is based on an analysis of what influences the
coverage factor. Note that this paper used PTC instead of ΘPST as the name of the coverage factor.

Recall that PTC may have two interpretations (and now we relate this to PST in particular):
I A fraction: The PST coverage is the fraction of DU failures detected by PST relative to the total

number of DU failures:

PTC =
λDU,PST
λDU

I Conditional probability: The probability that a dangerous undetected failure is detected by the
PST once a dangerous undetected failure is present (conditional probability)

PTC = Pr (Detect DU failure by PST | DU failure is present)

Remark: The first interpretation denotes a constant value of PTC, while the last may open up for a
discussion whether it takes the same value every time a DU failure occurs. In the following, we
disregard this issue.
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Determining Partial Proof Test Coverage

Approach II: Use of Checklist

Starting point is to say that:

PTC =
Pr (Detect DU failure by PST ∩ DU failure is present))

Pr (DU failure is present)

Let FM1, FM2, . . . FMn be the relevant DU failure modes. We may assume that they do not
occur at the same time (“mutually exclusive”):

PTC ≈
n∑
i=1

Pr (Detect FMi | FMi is present) · Pr (FMi is present)
Pr (DU failure is present)

Here, we may consider the PTCi of failure mode i as:

PTCi = Pr (Detect FMi | FMi is present)

with weight wi :

wi =
Pr (FMi is present)

Pr (DU failure is present)

Rausand & Lundteigen Chapter 11.Imperfect Proof-Testing (Version 0.1) 37 / 48



Determining Partial Proof Test Coverage

Approach II: Use of Checklist

The PST coverage can therefore be expressed as

PTC =
n∑
i=1

PTCi · wi

Note:

I The first factor, PTCi is mainly influenced by how suitable or capable PST is
for revealing failures for a particular type of valve

I The second factor, wi may be deduced from databases such as OREDA.

Rausand & Lundteigen Chapter 11.Imperfect Proof-Testing (Version 0.1) 38 / 48



Determining Partial Proof Test Coverage

Approach II: Use of Checklist
It is not straight forward to select “reasonable” PTCi, we first split PTCi into
two sub-factors:
I PST Revealability (PSTRev, i): To what extent the failure mode is
revealable during a partial stroke operation,

I PST reliability (PSTRel, i): To what extent the test results are reliable
(“trustable”), such that the announced results reflect the valve
condition.

This implies that:

PTCi = PSTRev, i · PSTRel, i

For simplicity, it is assumed that PST reliability is the same for all failure
modes, so that:

PTCi = PSTRev, i · PSTRel
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Determining Partial Proof Test Coverage

Approach II: Procedure

A procedure for determining the PST coverage (PTC) has been suggested by
Lundteigen and Rausand in https://doi.org/10.1016/j.jlp.2008.04.007:

I Step 1: Familiarization with the implementation of PST

I Step 2: Analyze the PST hardware and so�ware

I Step 3: Determine PST reliability - PSTRel

I Step 4: Determine PST revealability - PSTRev, i

I Step 5: Determine the failure mode weights - wi

I Step 6: Determine the PST coverage - PTC
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Determining Partial Proof Test Coverage

Step 1: Familiarization with the implementation of PST

The objective of Step 1 is to collect relevant information on the PST
implementation and the application specific conditions, including:

1. Which SIS components that are operated during a PST

2. The functional safety requirements of the SIS components, like valve closing
time and maximum allowed leakage in closed position

3. How PST is initiated and controlled by dedicated hardware and so�ware

4. The PST interface to the SIS and other systems, like the process control
system

5. The operational and environmental conditions under which the SIF operates,
including fluid characteristics, temperature, and pressure
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Determining Partial Proof Test Coverage

Step 2: Analyze the PST hardware and so�ware

The objective of Step 2 is to do a more thorough analysis of hardware and
so�ware dedicated for the execution of PST:
I Identify and analyze how PST hardware and so�ware failures a�ect

the PST execution and the SIS itself:
• How has the hardware and so�ware been verified, tested, and

documented?
• To what extent are the operators and other personnel involved familiar

with the PST implementation and procedures?
• How are failures revealed a�er a PST reported?

I Use this information as basis for answering checklist questions

The information may be identified by performing, or by review of an
existing failure modes and e�ects analysis (FMEA).
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Determining Partial Proof Test Coverage

Step 2: Use of FMEA

A small sample from an FMEA is shown below (just invented for this
purpose):

Description of component Failure and the failure e�ects

Component Type Function Failure mode E�ect on PST E�ect on SIS

Test initia-
tor

SW To initiate a PST Fail to initiate No execution of PST None

Timer SW Deactivate out-
put according to
timer setpoint

Fail to start No execution of PST None

Fail to reset Valve not returned to
initial position

Spurious valve closure

Position in-
dicators

HW Measure valve
position

No signal PST may be executed,
but valve position in-
dicator does not show
that the valve moves.

Repair must be initi-
ated to correct position
indicators

Wrong signal May fail to announce
the correct valve posi-
tion

SIS may be le� with
unrevealed failures.
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Determining Partial Proof Test Coverage

Step 3: Determine the PST reliability

The main purpose of Step 3 is to assess the trustworthiness of information
provided by the PST, using expert judgment.
No �estion Answer Weight Credit

1 Have success criteria for the partial stroke test been clearly defined? Y 10 0.14

2 Has an FMEA been performed to identify the SIS failure modes, and to what extent the the
failure modes can be detected during a partial valve operation?

Y 10 0.14

3 Have potential failures of the PST hardware and so�ware been identified and analyzed? N 10 0.07

4 Have potential secondary e�ects of PST on the reliability of valve, actuator and control devices
(e.g., solenoid operated valves) been analyzed?

N 5 0.04

5 Is the actual stem movement measured (in %), as opposed to just verifying that the valves
leaves and returns to the initial position?

Y 5 0.07

6 Is additional instrumentation installed, and is it capable of providing more insight to failure
causes?

N 1 0.01

7 Is the PST hardware and so�ware regularly inspected and tested (or otherwise verified)? Y 5 0.07

8 Is the feedback from PST recorded and further analyzed? Y 10 0.14

9 If short closure time is required: Has it been analyzed if the PST is able to provide useful
information?

Y 10 0.14

10 Are means implemented to verify that the position indicators are reliable? Y 5 0.07

Sum: 71 0.89
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Determining Partial Proof Test Coverage

Step 4: Determine the revealability factor

In Step 4, the purpose is to extend the FMEA sheet, in combination with
using expert judgment to assign revealability factors.

FAILURE MODE SUB-FAILURE MODES REVEALABILITY FACTOR

Fail to close Fail to start moving 100%
Starts, but does not reach end position 0%

Delayed operation Delayed start 100%
Starts, but uses too long closing time 70%

Leakage in closed Minor leakage 0%
position Major leakage 0%
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Determining Partial Proof Test Coverage

Step 5: Determine the failure mode weights

In Step 5, it is proposed to extend the FMEA further by assigning failure
mode weights wi. The values are selected in combination with expert
judgments and available data, e.g. from OREDA.

Refinement Resulting
Failure mode Weight Sub failure modes Split weight

Fail to close 40% Fail to start moving 80% 32%
Starts, but does not 20% 8%
reach end position

Delayed operation 40% Delayed start 40% 16%
Too long travel time 60% 24%

Leakage in closed 20% Minor leakage 60% 12%
position Major leakage 40% 8%

The percentages added here have been derived from OREDA in combination
with some expert judgments.
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Determining Partial Proof Test Coverage

Step 6: Calculate the PST coverage

The main purpose of Step 6 is to determine the value of the PTC, based on
the results of steps 3, 4 and 5. The following formula applies:

PTC = PSTRel

n∑
i=1

PSTRev, i · wi
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Determining Partial Proof Test Coverage

Advantages and disadvantages

PST is used to improve safety:
+ Improved safety

+ More frequent testing for dangerous
failure modes

+ Less sticking seals

÷ Process disturbances due to
function tests not reduced

÷ More wear on components (e.g.
solenoids)

÷ New dangerous failure causes or
existing ones more likely to occur?

÷ Added complexity:
• More spurious operations?
• New dangerous failure causes

introduced?

PST is used to extend proof test interval:
+ Reduced wear on e.g. valve seat

+ Less sticking seals

÷ Added complexity (as above)

÷ More wear on components (e.g. solenoids)

÷ Increased failure rate for those failure modes
that are seldom tested (fail to close or seal
completely)
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