

Evaluation and Decision Process for Greener Asphalt Roads

Workshop

- 1. Methodology & Indicator selection
- 2. Test cases & Assessment tools
- 3. Multiple Attribute Decision Making

Matthew Wayman (TRL)
Johan Maeck (BRRC)
Nicolas Bueche (EPFL)

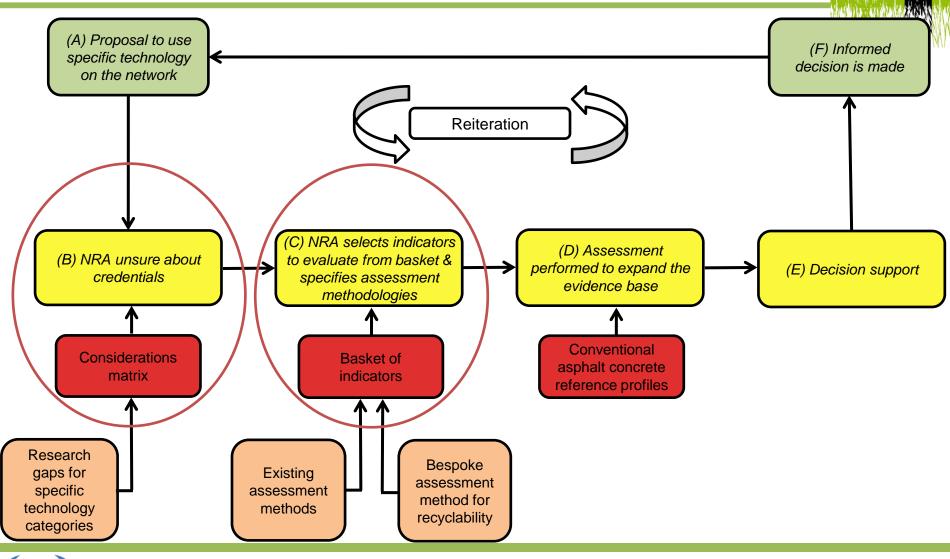
Evaluation and Decision Process for Greener Asphalt Roads

Workshop

- 1. Methodology & Indicator selection
- 2. Test cases & Assessment tools
- 3. Multiple Attribute Decision Making

Matthew Wayman (TRL)
Johan Maeck (BRRC)
Nicolas Bueche (EPFL)

The EDGAR Methodology



Motivation

- The asphalt industry is not short of innovation: recycled materials, lower-temperature materials, green binders, additives...
- Sometimes these are not adopted as quickly as they could be
- The EDGAR methodology seeks to facilitate informed decision making over the use of new technologies
 - Quick & easy assessment
 - Quicker adoption
 - Leading to improved sustainability performance

How does the method work?

Deciding what to assess

(B) NRA unsure about a new technology's credentials

Identifying the particular concerns with a new technology...

- ⇒ The 'Considerations Matrix' can assist here
 - ⇒ Different potential 'issues' have been identified against different families of asphalt technology
 - Based on an extensive literature review

Applicable sustainability Indicator(s)	Global warming potential	Depletion of resources & waste management	Air pollution	Leaching potential	Noise	Skid resistance	Financial cost	Recyclability	Performance (durability)	Responsible sourcing	Traffic congestion
Secondary and open-loop recycled m	naterials										
Steel slag	•	•	~	•	•	•	•	•	•	•	•
Fly ash	•	*	*	•		•	*	•	•	*	•
Crumb rubber	•	•	*	•	•		•	•	•	•	
Shredded roofing	•	*	•	•	•	•	*	•	•	*	*
Crushed glass	•	*	٧	•	•	•	•	*	•	*	*
Alternative and modified binders				•	•	•	•	•	•		
Bio-binders	•	Y	•	•		•	•	•	•	•	•
Sulphur		•	A	_	•	•	_	_	_	_	_

gaps in
evidence =
clear
negative =
potential
positive =
anticipated
neutral =

v

Deciding what to assess

(C) NRA selects indicators to evaluate from the basket...

The basket of indicators:

Global warming potential

Depletion of resources

Air pollution

Leaching potential

Noise

Skid resistance

Financial cost

Recyclability

Performance

Responsible sourcing

Traffic congestion

- These eleven indicators were selected using EN 15804
- Normalising the impacts to determine which are more significant for asphalt
 - Eutrophication and ozone layer depletion were 'dropped'
- Supplementing to make a rounded 'sustainability' assessment
 - Economic (financial cost and traffic congestion), social (skid resistance, noise, responsible sourcing) and performance aspects were included
- A CE marking (and declaration of performance against aspects such as fire resistance) already assumed

How to make the assessment

(C) NRA selects indicators to evaluate from the basket...

In relation to the specific technology, considering the specific concerns in relation to the basket of indicators, the NRA may decide to:

- ⇒ Request that the evidence gaps are filled (♠)
- Ignore the anticipated neutrals (*)
- ⇒ Accept or re-assess the negatives (♦)
- → Accept or re-assess the positives, to support the business case (♣)

How to make the assessment

(C) NRA selects indicators to evaluate from the basket...

As applied to a chemical additive (e.g. for warm-mix):

Evidence gaps (*)

Global warming potential

Leaching potential

Financial cost

Recyclability

Performance

Responsible sourcing

Anticipated neutrals (♥)

Depletion of resources

Noise

Skid resistance

Positives (*)

Air pollution

Traffic congestion

How to make the assessment

(C) NRA specifies the assessment methodology...

Some are recommended as part of the methodology:

⇒ These have been selected to facilitate quick and easy assessment (mainly desk or lab-based

Global warming potential	5	Depletion of resources and waste			Air po	oll	ution		Leaching potential			Noise		
asPECT v4.0 (cradle-to - gate)MIRAVEC (use))	Indicator MD- 2 from Greenroads			or PaLATE		_		CEN/TS 16637 leaching tests		 Laborator drum met 		aboratory rum methods	
Skid resistance	Fi	nancial cost		Recy	clability		Perforr (durat				Responsible sourcing			Traffic congestion
• Pendulum test		• LCCA Express 2.0 • EDGAF bespoke method		spoke		 Resis to fati rutti was 	gu ng	ie /		• BES 600:	1		• QUADRO	

⇒ Though the final choice of method is with the user

sensitivity

Discussion and questions

- Do you think such a methodology would facilitate implementation of new, more sustainable technologies?
- 2. Any ideas on the performance indicator, how could this be properly assessed?
- 3. Do we have the right set of indicators, should social and economic indicators be included?
- 4. At what time would an assessment be most useful?
 - In a pre-approval scheme
 - Alongside scheme design
 - At another time (please specify)
- 5. Can you think of any technologies that would immediately benefit from an assessment?

Evaluation and Decision Process for Greener Asphalt Roads

Workshop

- 1. Methodology & Indicator selection
- 2. Test cases & Assessment tools
- 3. Multiple Attribute Decision Making

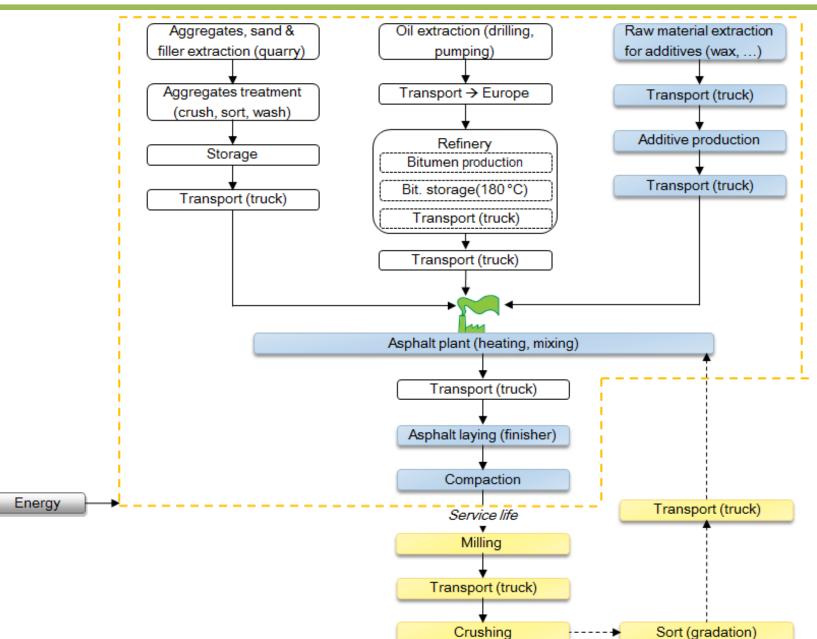
Matthew Wayman (TRL)
Johan Maeck (BRRC)

Nicolas Bueche (EPFL)

Test cases

chosen for applying the methodology, based on

- relevance & importance of test cases for today's practice
- evidence of a potential impact of test cases on sustainability
- availability of data needed to assess the basket of selected indicators


Case study: AC-10 surface course

Case 1: HMA (reference)	paving grade bitumen (70/100) 6,2% transport modes – distances: boat vs road; return trips traffic congestion & cost model data life time of 10 y
Case 2: WMA	Case 1 + mixing at 130 ° C (instead of 160 ° C): fuel gain 3 m% wax on bitumen reduction of road closure duration
Case 3: WMA with RA	Case 2 + 30% RA
Case 4: CIR	on site recycling foam technology with 1% cement extended road closure duration
Case 5: HMA with steel slag	Case 1 + steel slag aggregates (instead of porphyry) 10% heavier: transport same binder content

Life cycle based analysis

Global warming potential

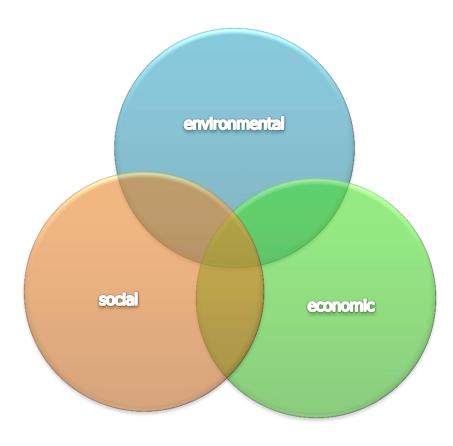
Depletion of resources

Air pollution

Leaching potential

Noise

Skid resistance


Financial cost

Recyclability

Performance

Responsible sourcing

Traffic congestion

Global warming potential

Depletion of resources

Air pollution

Leaching potential

Noise

Skid resistance

Financial cost

Recyclability

Performance

Responsible sourcing

Traffic congestion

- expressed in CO₂e according to EN15804
- assessment: asPECT
- bitumen (190kg CO₂e/tonne), synthetic wax carbon footprint (5700kg CO₂e/tonne), cement (913kg CO₂e/tonne)
- steel slags: no carbon footprint
- transport trucks considered empty (at lower fuel consumption) for return trip
- estimated 1 L less for WMA production
- traffic emissions based on 10 years, average traffic of 6000 cars/day & 1000 trucks/day

CO₂e

GWP in different life stages

Stage	1 - HMA	2 - WMA	3 - WMA with RA	4 - CIR	5 - HMA with steel slag
A1-raw materials	16.9	26.8	21.8	18.0	13.9
A2-transport to plant	5.5	5.5	4.2	0	6.2
A3-production in plant	22.3	19.1	19.1	2.3	22.3
A4-transport to worksite	5.8	5.8	5.8	3.4	6.4
A5-laying	1.2	1.2	1.2	1.2	1.2
B1-road use	1.97e4	1.97e4	1.97e4	1.97e4	1.97e4
B2-4-maintenance	0	0	0	0	0
C1-demolition	3.1	3.1	3.1	3.1	3.1
C2-waste transport	5.8	5.8	5.8	5.8	6.4
C3-waste processing for recycling	2.0	2.0	2.0	2.0	2.0
C4-waste disposal	0	0	0	0	0
Total (excluding B1)	<u>62.7</u>	<u>69.4</u>	<u>63.1</u>	<u>33.5</u>	<u>59.6</u>

- materials & production & recycling
- use stage
- transport

Global warming potential

Depletion of resources

Air pollution

Leaching potential

Noise

Skid resistance

Financial cost

Recyclability

Performance

Responsible sourcing

Traffic congestion

Bitumen

Gas

Fuel

assessment: Guinée J., van Oers L. (2002)

Global warming potential

Depletion of resources

Air pollution

Leaching potential

Noise

Skid resistance

Financial cost

Recyclability

Performance

Responsible sourcing

Traffic congestion

Production Transport

assessment tool: ECORCE

EDGAR

Global warming potential

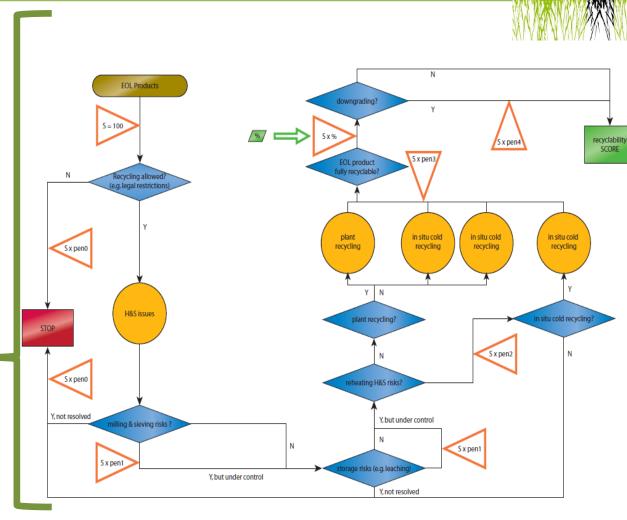
Depletion of resources

Air pollution

Leaching potential

Noise

Skid resistance


Financial cost

Recyclability

Performance

Responsible sourcing

Traffic congestion

Global warming potential

Depletion of resources

Air pollution

Leaching potential

Noise

Skid resistance

Financial cost

Recyclability

Performance

Responsible sourcing

Traffic congestion

Performance testing:

- Rutting
- Water sensitivity
- Fatigue
- Ravelling

Global warming potential

Depletion of resources

Air pollution

Leaching potential

Noise

Skid resistance

Financial cost

Recyclability

Performance

Responsible sourcing

Traffic congestion

- responsible sourcing policy
- material traceability through supply chain
- H&S management systems in the supply chain
- local communities (e.g. jobs)
- ...

assessment method: BRE Standard BES 6001 for Responsible Sourcing

Indicators assessed for all cases **WAR**

					1	2	3	4	5
	Indicators	Sı	ub-indicators	Unit	НМА	WMA	WMA+ RAP	CIR	HMA + steel slag
C1	GWP/Climate change			kg CO2eq	62.6815	69.36	63.055	33.5	59.626
C2	Depletion of resources			kg sbeq/tonne	2.22E-04	2.13E-04	1.54E-04	8.91E-05	2.23E-04
		C3.1	Acidification	kg SO2eq	1.27E-01	1.25E-01	1.17E-01	3.35E-02	8.16E-02
C3	Air pollution	C3.2	Photochemical oxidant formation	kgEthene eq	7.93E-02	7.81E-02	7.28E-02	1.74E-02	5.23E-02
C4	Leaching potential			-	4.33e-7	-	-	-	1.06e-6
C5	Noise			dB	95.2	95.2	95.2	-	91.7
C6	Skid resistance			BPN	65	65	70	-	62
C7	Financial cost			€	189	190	154	183	185
C8	Recyability			-	100%	100%	80%	72%	80%
С9	Performance	C9.1	Resistance to rutting	%	6%	5%	5%	6%	5%
		C9.2	Resistance to fatigue	[10-6]	115	120	120	103.5	115
		C9.3	Water sensitivity	%	90%	87%	90%	77%	90%
C10	Responsible sourcing			-	33	33	33	33	33
C11	Traffic congestion			€	23.84	18.3	18.3	55.84	23.84

Discussion and questions

Evaluation and Decision Process for Greener Asphalt Roads

Workshop

- 1. Methodology & Indicator selection
- 2. Test cases & Assessment tools
- 3. Multiple Attribute Decision Making

Matthew Wayman (TRL) Johan Maeck (BRRC)

Nicolas Bueche (EPFL)

Background

Background

- Question: Which is the best alternative between various asphalt mixtures
 - Definition of criteria
 - 2. Data gathering
 - **3. Global evaluation methodology** needed!

Objective:

- Develop a methodology that helps in the decision making between different asphalt mixtures types
- Requirements: Progressive methodology, various parameters, (qualitative / quantitative), flexibility, sensitivity analysis, probabilistic approach

Model overview

Input data

2 – Global Evaluation Methodology

Level 1

Pareto

analysis

Objective: Identify the dominant processes for each alternative and criteria

Data: Raw and normalized performance indicators

· Criteria: GWP, depletion of resources, air pollution - LCA

Method: Pareto analysis

Level 2

Objective: Identify potential alternative outranking

Data: Raw and normalized performance indicators

Graphical analysis

· Criteria: All criteria

Method: Graphical analysis and radar diagram

Level 3

Objective: Alternatives ranking

Partial

·Criteria: All criteria

agregation

•Method: Partial aggregation (Electre III)

Objective: Alternatives ranking

Level 4

Data: Raw

•Data: Raw

Complete

Criteria: All criteria

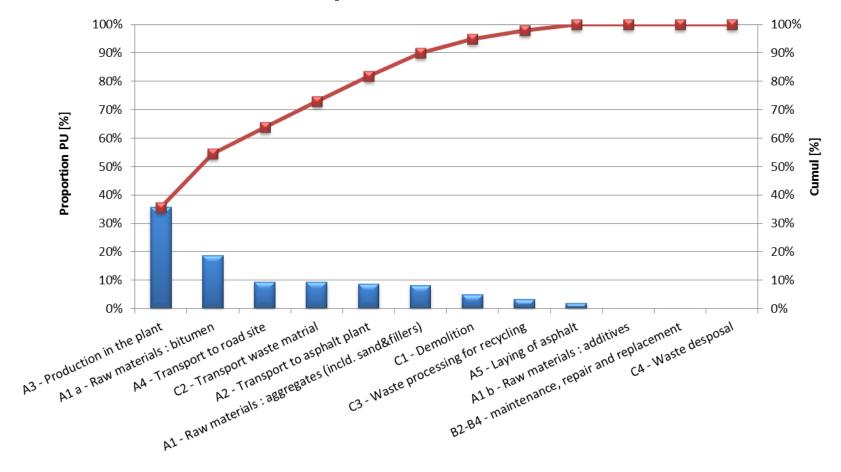
agregation

Method: Complete aggregation (Evidential reasoning approach)

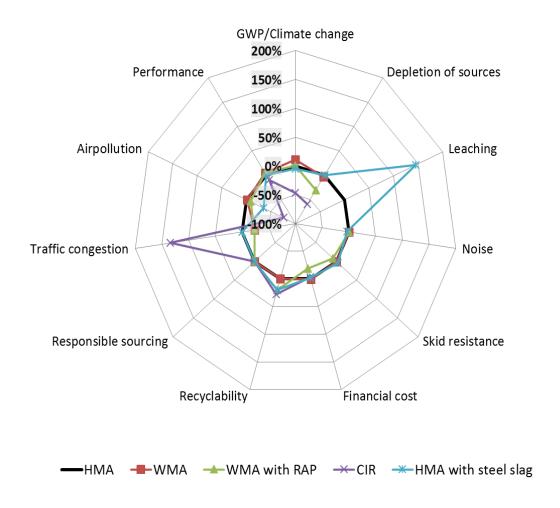
DECISION AID (asphalt mixture type)

Input for MADM: Case study

EDGA K


					1	2	3	4	5/\\\
	Indicators	Si	ub-indicators	Unit	НМА	WMA	WMA+ RAP	CIR	HMA + steel slag
C1	GWP/Climate change			kg CO2eq	62.6815	69.36	63.055	33.5	59.626
C2	Depletion of resources			kg sbeq/tonne	2.22E-04	2.13E-04	1.54E-04	8.91E-05	2.23E-04
		C3.1	Acidification	kg SO2eq	1.27E-01	1.25E-01	1.17E-01	3.35E-02	8.16E-02
C3	Air pollution	C3.2	Photochemical oxidant formation	kgEthene eq	7.93E-02	7.81E-02	7.28E-02	1.74E-02	5.23E-02
C4	Leaching potential			-	4.33e-7	-	-	-	1.06e-6
C 5	Noise			dB	95.2	95.2	95.2	-	91.7
C6	Skid resistance			BPN	65	65	70	-	62
C7	Financial cost			€	189	190	154	183	185
C8	Recyability			-	100%	100%	80%	72%	80%
C 9	Performance	C9.1	Resistance to rutting	%	6%	5%	5%	6%	5%
		C9.2	Resistance to fatigue	[10-6]	115	120	120	103.5	115
		C9.3	Water sensitivity	%	90%	87%	90%	77%	90%
C10	Responsible sourcing			-	33	33	33	33	33
C11	Traffic congestion			€	23.84	18.3	18.3	55.84	23.84

Level 1: Pareto analysis


GWP, Hot Mix Asphalt

Level 2: Graphical analysis

Level 3: Partial aggregation

EDGAR

Weighting

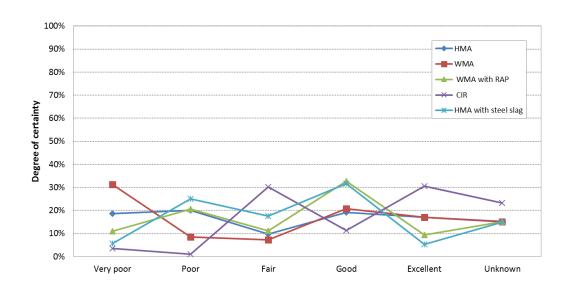
N°	Indicator	ω	W _i	eighting ω (C) 1] Final
C1	GWP/Climate change	ω_1	0.175	(WI) MI	0.1750
C2	Depletion of resources	ω2	0.050		0.0500
C3.1	Air pollution- Acidification	ω31	0.075	0.500	0.0375
C3.2	Air pollution-photochemical oxidant formation	ω ₃₂	0.075	0.500	0.0375
C4	Leaching potential	ω4	0.050		0.0500
C5	Noise	ω5	0.063		0.0625
C6	Skid resistance	ω_6	0.050		0.0500
C7	Financial cost	ω_7	0.088		0.0875
C8	Recyclability	ω8	0.138		0.1375
C9.1	Performance-Resistance to rutting	ω ₉₁		0.500	0.1125
C9.2	Performance-Resistance to fatigue	ω_{92}	0.225	-	-
C9.3	Performance-water sensitivity	ω93		0.500	0.1125
C10	Responsible sourcing	ω ₁₀	0.038		0.0375
C11	Traffic congestion	ω ₁₁	0.050		0.0500
		Sum ω	1.00	Ok	1.0000
		Verification	Ok	UK	Ok

Thresholds

Indicator	C1	C2	C3.1	C3.2	C4	C5	C6	C 7	C8	C9.1	C9.2	C9.3	C10	C11
Unit	kg CO2eq	kg sbeq/tonne	kg SO2eq	kgEthene eq	-	dB	BPN	€	%	%	%	[10-6]	-	€
q _j	1.0	1.0E-05	2.0E-03	2.00E-3	1.0e-7	0.5	1	5	0.05	0.001	2	0.05	0.5	4
p _j	5.0	3.0E-05	1.0E-02	1.00E-2	3.0e-7	1	2	10	0.10	0.01	5	0.10	1	10
Vj	50.0	3.0E-04	0.1	0.10	1.5e-5	15	20	100	1.00	1.00	50	1.00	10	100

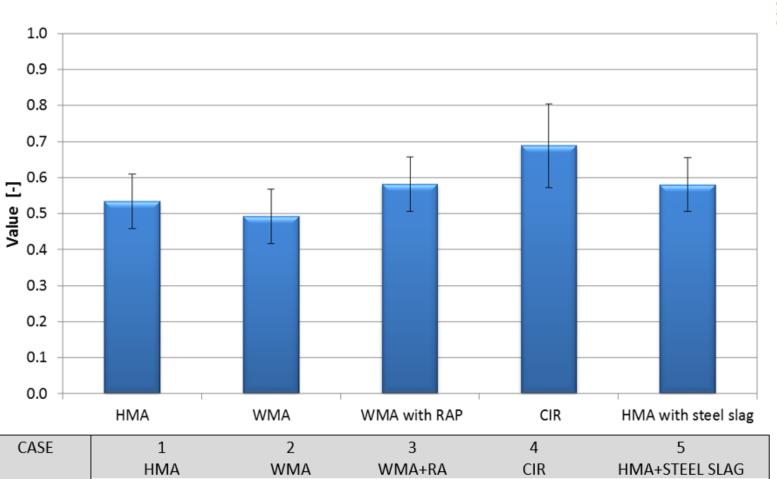
Results (ranking)

CASE	1	2	3	4	5
	HMA	WMA	WMA+RA	CIR	HMA+STEEL SLAG
RANK	4	5	2	1	3



Level 4: Complete aggregation

Performance levels


				Transfo	rmation ma	atrix ·	- quantitative	e indicato	ſ					
	C1	C2	C3.1	C3.2	C4	C 5	C6	C7	C8	C9.1	C9.2	C9.3	C10	C11
	kg CO2eq	_	kg SO2eq	kgEthene eq	-	dB	BPN	€	-	%	[10-6]	%	-	€
<u>Unknown</u>					No va	lues i	s assigned							
Very poor	71	2.25E-04	1.30E-01	8.10E-02	4.40E-06	96	60	630	e	10.0%	100	70%	20	58
<u>Poor</u>	61.5	1.90E-04	1.05E-01	6.50E-02	3.40E-06	92	63	615	ti∖	8.5%	105	75%	22	48
<u>Fair</u>	52	1.55E-04	8.00E-02	4.90E-02	2.40E-06	88	66	600	lita	7.0%	110	79%	26	38
<u>Good</u>	42.5	1.20E-04	5.50E-02	3.30E-02	1.40E-06	84	69	585	Qua	3.5%	120	84%	30	28
<u>E</u> xcellent	33	8.50E-05	3.00E-02	1.70E-02	4.00E-07	80	72	570		0.0%	130	88%	33	18

Belief degree (overall performance)

Level 4: Complete aggregation

Sensitivity analysis (robustness)

- Objective: Assess solution robustness
- Process: Vary key parameters one by one and analyse consequences on final ranking

	Referenc	e ranking	Average ranking fr	om sensitivity analysis
	Partial aggregation Method	Complete aggregation method	Partial aggregation Method	Complete aggregation method
НМА	4	4	4	4
WMA	5	5	5	5
WMA+RA	2	2	2	2
CIR	1	1	1	1
HMA+Steel Slag	3	3	3	3

Discussion and questions

Thank you for your participation & feedback

https://www.ntnu.edu/edgar

EDGAR - NTNU

