The Operating Room of the Future

The strategic area Medical Technology is closely related to the future operating rooms and its research is performed in close cooperation with the University Hospital in Trondheim and the Intervention Centre.

The Norwegian Cancer Centre for Molecular Imaging has been established to facilitate the interaction between the research efforts in medical technology and the clinicians and researchers at the University Hospital. The link between theory and practice is of central importance, and the research is organized into project teams.

The research focuses on the development of new technologies for the evaluation of treatment effects in cancer by MR imaging and PET/CT.

The research groups are: MR Metabolomics, Instrumentation and Technologies, Imaging Technologies and Therapeutic Agents.

The research aims to develop new methods for the evaluation of treatment effects in cancer by MR imaging and PET/CT.

The research groups are: MR Metabolomics, Instrumentation and Technologies, Imaging Technologies and Therapeutic Agents.

The research focuses on the development of new technologies for the evaluation of treatment effects in cancer by MR imaging and PET/CT.

The research groups are: MR Metabolomics, Instrumentation and Technologies, Imaging Technologies and Therapeutic Agents.

The research aims to develop new methods for the evaluation of treatment effects in cancer by MR imaging and PET/CT.

The research groups are: MR Metabolomics, Instrumentation and Technologies, Imaging Technologies and Therapeutic Agents.

The research focuses on the development of new technologies for the evaluation of treatment effects in cancer by MR imaging and PET/CT.

The research groups are: MR Metabolomics, Instrumentation and Technologies, Imaging Technologies and Therapeutic Agents.

The research aims to develop new methods for the evaluation of treatment effects in cancer by MR imaging and PET/CT.

The research groups are: MR Metabolomics, Instrumentation and Technologies, Imaging Technologies and Therapeutic Agents.

The research focuses on the development of new technologies for the evaluation of treatment effects in cancer by MR imaging and PET/CT.

The research groups are: MR Metabolomics, Instrumentation and Technologies, Imaging Technologies and Therapeutic Agents.

The research aims to develop new methods for the evaluation of treatment effects in cancer by MR imaging and PET/CT.

The research groups are: MR Metabolomics, Instrumentation and Technologies, Imaging Technologies and Therapeutic Agents.

The research focuses on the development of new technologies for the evaluation of treatment effects in cancer by MR imaging and PET/CT.

The research groups are: MR Metabolomics, Instrumentation and Technologies, Imaging Technologies and Therapeutic Agents.

The research aims to develop new methods for the evaluation of treatment effects in cancer by MR imaging and PET/CT.

The research groups are: MR Metabolomics, Instrumentation and Technologies, Imaging Technologies and Therapeutic Agents.

The research focuses on the development of new technologies for the evaluation of treatment effects in cancer by MR imaging and PET/CT.

The research groups are: MR Metabolomics, Instrumentation and Technologies, Imaging Technologies and Therapeutic Agents.

The research aims to develop new methods for the evaluation of treatment effects in cancer by MR imaging and PET/CT.

The research groups are: MR Metabolomics, Instrumentation and Technologies, Imaging Technologies and Therapeutic Agents.

The research focuses on the development of new technologies for the evaluation of treatment effects in cancer by MR imaging and PET/CT.

The research groups are: MR Metabolomics, Instrumentation and Technologies, Imaging Technologies and Therapeutic Agents.

The research aims to develop new methods for the evaluation of treatment effects in cancer by MR imaging and PET/CT.

The research groups are: MR Metabolomics, Instrumentation and Technologies, Imaging Technologies and Therapeutic Agents.

The research focuses on the development of new technologies for the evaluation of treatment effects in cancer by MR imaging and PET/CT.

The research groups are: MR Metabolomics, Instrumentation and Technologies, Imaging Technologies and Therapeutic Agents.
The Strategic Area Medical Technology was funded by the Board of NTNU in 2010. The aim is to develop a unique interdisciplinary research environment, promoting collaboration between researchers from different parts of the university to contribute to excellent research and innovation in health care, and to improve patient outcomes.

In 2010, the Strategic Area launched a call for an excellent interdisciplinary research project between researchers at NTNU and our collaborators at SINTEF and St. Olavs Hospital, and the projects were funded. The project aims to current level of research and future directions. The projects aim to research from bench to bedside at NTNU.

In 2010, the Research Council of Norway evaluated all the received four applications for large-scale research facilities in the field of medical technology and received four applications for large-scale research facilities in the field of medical technology. These results add evidence to the hypothesis that the research activity on nanoparticles and nanomedicine considerably.

A large body of the research focuses on the development and clinical validation of technologies for workflow support. In this review, we describe various workflow systems and clinical institutions in pre-analytic processing. Detection, diagnosis, and prospective systems are valuable tools employed to improve the management of healthcare services by reducing the need for redundant, non-value-added care. We developed a novel framework for enhancing the flow of expertise between the groups which strengthens the interdisciplinary research in diagnostics and navigated therapy during for example.

By applying ultrasound technology, one of the world’s largest health surveys, HUNT, it was found that cardiac function is related to several cardiovascular risk factors. An original discovery was the J-shaped association between cardiac function and diastolic blood pressure. Also, the study identified a number of new risk factors related to cardiovascular disease.

The extreme artist’s balance was measured. The Central Norway Regional Development Centre for Neuroscience laboratories at the Department of Neuroscience and a pilot study of the Department of Human Motor Control was conducted. In 2010, a new project was initiated to strengthen the interdisciplinary research in diagnostics and navigated therapy during for example.

When producing, interpreting and using the images, and how they inside visible, how cultural values contribute to the processes. The figure is a schematic presentation of a the internal seminar “1st NTNU NanoLab Seminar on Nanobiotechnology and Nanomedicine” conducted in 2011. The extreme artist’s balance was measured. The Central Norway Regional Development Centre for Neuroscience laboratories at the Department of Neuroscience were responsible for the development of the tool, which can be used for pre-analytic processing. Detection, diagnosis, and prospective systems are valuable tools employed to improve the management of healthcare services by reducing the need for redundant, non-value-added care.

A large body of the research focuses on the development and clinical validation of technologies for workflow support. In this review, we describe various workflow systems and clinical institutions in pre-analytic processing. Detection, diagnosis, and prospective systems are valuable tools employed to improve the management of healthcare services by reducing the need for redundant, non-value-added care.