Background and activities

 

Topics of interest with published research:

  • Electronic and magnonic spin transport
  • Nanomechanics and magneto-mechanical coupling
  • Classical magnetization dynamics
  • Quantum optics and magnonics
  • Spin current noise and correlations
  • Magnet-Superconductor hybrids

 

Other topics of interest:

  • Unconventional superconductivity
  • Analog computing
  • Frustrated spin systems

 

Publications:

Check out my Google Scholar profile for an up to date list

A. Rezaei, A. Kamra, P. Machon, and W. Belzig. Spin-flip enhanced thermoelectricity in superconductor-ferromagnet bilayers. arXiv:1711.11538 [cond-mat.supr-con] (2017).

M. Pernpeintner, A. Kamra, S. T. B. Goennenwein and H. Huebl. Characterizing spin transport: detection of spin accumulation via magnetic stray field. arXiv:1709.01820 [cond-mat.mtrl-sci] (2017).

A. Kamra and W. Belzig. Spin pumping and shot noise in ferrimagnets: bridging ferro- and antiferromagnets. Phys. Rev. Lett. 119, 197201 (2017).

A. Kamra, U. Agrawal, and W. Belzig. Noninteger-spin magnonic excitations in untextured magnets. Phys. Rev. B 96, 020411(R) (2017).

H. Keshtgar, S. Streib, A. Kamra, Y. M. Blanter, and G. E. W. Bauer. Magnetomechanical coupling and ferromagnetic resonance in magnetic nanoparticles. Phys. Rev. B 95, 134447 (2017).

A. Kamra and W. Belzig. Magnon-mediated spin current noise in ferromagnet | nonmagnetic conductor hybrids. Phys. Rev. B 94, 014419 (2016).

A. Kamra and W. Belzig. Super-Poissonian shot noise of squeezed-magnon mediated spin transport. Phys. Rev. Lett. 116, 146601 (2016).

S. Geprägs, A. Kehlberger, T. Schulz, C. Mix, F. Della Coletta, S. Meyer, A. Kamra et al. Origin of the spin Seebeck effect in compensated ferrimagnets. Nature Communications 7, 10452 (2016).

A. Kamra, S. von Hoesslin, N. Roschewsky, J. Lotze, M. Schreier, R. Gross, S. T. B. Goennenwein, and H. Huebl. An all-electrical torque differential magnetometer operating under ambient conditions. Eur. Phys. J. B 88, 224 (2015).

A. Kamra, H. Keshtgar, P. Yan, and G. E. W. Bauer. Coherent elastic excitation of spin waves. Phys. Rev. B 91, 104409 (2015).

A. Kamra, F. Witek, S. Meyer, S. Geprägs, H. Huebl, R. Gross, G. E. W. Bauer, and S. T. B. Goennenwein. Spin Hall noise. Phys. Rev. B 90, 214419 (2014).

A. Kamra, M. Schreier, H. Huebl, and S. T. B. Goennenwein. Theoretical model for torque differential magnetometry of single domain magnets. Phys. Rev. B 89, 184406 (2014).

N. Roschewsky, M. Schreier, A. Kamra, F. Schade, K. Ganzhorn, S. Meyer, H. Huebl, S. Geprags, R. Gross, and S. T. B. Goennenwein. Time resolved spin Seebeck effect experiments. Appl. Phys. Lett. 104, 202410 (2014).

M. Weiler, M. Althammer, M. Schreier, J. Lotze, M. Pernpeintner, S. Meyer, H. Huebl, R. Gross, A. Kamra, J. Xiao, Y. T. Chen, H. Jiao, G. E. W. Bauer, and S. T. B. Goennenwein. Experimental test of the spin mixing interface conductivity concept. Phys. Rev. Lett. 111, 176601 (2013) (Editor’s suggestion).

A. Kamra and G. E. W. Bauer. Actuation, propagation and detection of transverse magnetoelastic waves in ferromagnets. Sol. Stat. Comm. SI: Spin Mechanics 198, 35 (2014).

P. Yan, A. Kamra, Y. Cao, and G. E. W. Bauer. Angular and linear momentum of excited ferromagnets. Phys. Rev. B 88, 144413 (2013).

M. Schreier, A. Kamra, M. Weiler, J. Xiao, G. E. W. Bauer, R. Gross, and S. T. B. Goennenwein. Magnon, phonon and electron temperature profiles and the spin Seebeck effect in magnetic insulator/normal metal hybrid structures. Phys. Rev. B 88, 94410 (2013).

A. Kamra and B. Ghosh. The role of electron electron scattering in spin transport. J. Appl. Phys. 109, 024501 (2011).

A. Kamra, B. Ghosh, and T. K. Ghosh. Spin relaxation due to electron-electron magnetic interaction in high Lande g-factor semiconductors. J. Appl. Phys. 108, 054505 (2010).

K. Goss, A. Kamra, C. Spudat, C. Meyer, P. Koegerler, and C. M. Schneider. CVD growth of carbon nanotubes using molecular nanoclusters as catalyst. phys. stat. sol. (b) 246, 2494 (2009).

A. Kamra, P. P. Pathak, and V. A. Singh. Mean field theory of coulomb blockade distribution for a disordered ensemble of quantum dots. Phys. Rev. B 77, 115302 (2008).

A. Kamra, P. Pathak, and V. A. Singh. A mean field approach to coulomb blockade for a disordered assembly of quantum dots. Pramana 70, 279 (2008).