Thermoelectric oxides and TE-devices

 

Thermoelectric oxides and TE-devices

Picture of an interface between two ceramics.

MenuThermo

Our team has several decades of experience in synthesis and characterization of functional oxides for energy applications. Since 2013 a new activity has emerged in thermoelectric materials based on oxides. This activity involves development of thermoelectric oxides with improved thermoelectric properties as well as novel approaches to prepare thermoelectric devices for high temperature waste heat harvesting.

 
Our group is a partner in the THELMA-project (NANO-2021, Norwegian Research Council), since 2014 and a partner in THERMiO (Thermoelectrics for industrial applications) since 2016. In 2018 the project “Development of high temperature oxide-based thermoelectric materials for waste heat recovery” was initiated in collaboration with DTU (Technical University of Denmark), the project is financed by NTNU.

Research Interests

Graph of electrical conductivity vs temperature.

Improve thermoelectric properties of n-type oxides: A functional thermoelectric device relies on the successful coupling between n-type and p-type oxides. Whereas p-type oxides with excellent thermoelectric properties have been established the existing n-type oxides are still inferior and need to be significantly improved. We have approached this challenge by introducing a novel synthesis route to form composite oxides with significantly improved properties. These results form the basis for our future direction to further enhance the thermoelectric properties of n-type oxides.

 

Graph over voltage vs current.

Thermo electric generators (TEG): The traditional way to assemble a TEG is to produce separate legs of n- and p-type oxides and establish electric contact at the p/n-junction using a noble metal. Our group has introduced a radical different approach, using co-sintering to assemble direct oxide-oxide p-n junctions by spark plasma sintering. Testing of the device proved full functionality and this approach will be a guideline for our upcoming activities.

 

Photo of experimental equipment.

  • Spark plasma sintering unit (SPS, Dr. Sinter 825)
  • Thermal conductivity instrument (Netzsch LFA 457 MicroFlash)
  • Electrical conductivity (4-point-DC-measurement)
  • Seebeck coefficient (ProboStat, NorECs AS)

 

 

 

 

 

S. P. Singh, N. Kanas, T. D. Desissa, M.-A. Einarsrud, T. E. Norby and K. Wiik
Thermoelectric properties of non-stoichiometric CaMnO3composites formed by redox-activated exsolution
J. Eur. Ceram. Soc. 40 (2020) 1344-1351

N. Kanas, G. Skomedal, T. D. Desissa, A. Feldhoff, T. Grande, K. Wiik and M.-A. Einarsrud
Performance of a Thermoelectric Module Based on n-Type (La0.12Sr0.88)0.95TiO3−δ and p-Type Ca3Co4−xO9+δ
J. Electron. Mater. (2020).

A. E. Gunnæs, R. Tofan, K. Berland, S. Gorantla, T. Storaas, T. D. Desissa, M. Schrade, C. Persson, M.-A. Einarsrud, K. Wiik, T. Norby and N. Kanas
Chemical stability of Ca3Co4-xO9+δ/CaMnO3-δ p–n junction for oxide-based thermoelectric generators
RSC Adv. 10 (2020) 5026.

S. P. Singh, N. Kanas, T. D. Desissa, M. Johnsson, M.-A. Einarsrud, T. Norby and K. Wiik
Thermoelectric properties of A-site deficient La-doped SrTiO3 at 100–900 °C under reducing conditions
J. Eur. Ceram. Soc. 40 (2020) 401-407.

N. Kanas, S. P. Singh, M. Rotan, T. D. Desissa, T. Grande, K. Wiik, T. Norby and M.-A. Einarsrud
Thermoelectric Properties of Ca3Co2-xMnxO6 (x = 0.05, 0.2, 0.5, 0.75, and 1)
Materials 12 (2019) 12.

M. Bittner, N. Kanas, R. Hinterding, F. Steinbach, D. Groeneveld, P. Wemhoff, K. Wiik, M.-A. Einarsrud, and A. Feldhoff
Triple-phase ceramic 2D nanocomposite with enhanced thermoelectric properties
J. Eur. Ceram. Soc. 39 (2019) 1237-1244.

M. Bittner, N. Kanas, R. Hinterding, F. Steinbach, J. Räthel, M. Schrade, K. Wiik, M.-A. Einarsrud and A. Feldhoff
A comprehensive study on improved power materials for high-temperature thermoelectric generators
J. Power Sources 410–411 (2019) 143–151

T. D. Desissa, N. Kanas, S. P. Singh, K. Wiik, M.-A. Einarsrud and T. Norby
Chemical tracer diffusion of Sr and Co in polycrystalline Ca-deficient CaMnO3−δ with CaMn2O4 precipitates
Phys. Chem. Chem. Phys. 20 (2018) 2754-2760.

N. Kanas, S. P. Singh, M. Rotan, M. Saleemi, M. Bittner, A. Feldhoff, T. Norby, K. Wiik, T. Grande and M.-A. Einarsrud
Influence of processing on stability, microstructure and thermoelectric properties of Ca3Co4-xO9+δ
J. Eur. Ceram. Soc. 38 (2018) 1592–1599.

M. Bittner, B. Geppert, N. Kanas, S. P. Singh, K. Wiik and A. Feldhoff
Oxide Based Thermoelectric Generator for High-Temperature Application Using p-Type Ca3Co4O9 and n-Type In1.95Sn0.05O3 legs
Energy Harvesting and Systems 3 (2016) 213-222.

T. E. Loland, J. Sele M.-A. Einarsrud, P. E. Vullum, M. Johnsson and K. Wiik
Thermal Conductivity of A-Site Cation-Deficient La-Substituted SrTiO3 Produced by Spark Plasma Sintering
Energy Harvesting and Systems 2 (2015) 63-71.

person-portlet

Mari-Ann Einarsrud
Professor
mari-ann.einarsrud@ntnu.no
+47-48136521
Tor Grande
Pro-Rector for Research
tor.grande@ntnu.no
+47-97616918
Sverre Magnus Selbach
Professor
selbach@ntnu.no
+47-91646302
Kjell Wiik
Professor
kjell.wiik@ntnu.no
+47-73594082

ContactThermo

Contact

Kjell Wiik. Photo

Professor Kjell Wiik
kjell.wiik@ntnu.no
+47 73 59 40 82

 

 


HighlightsThermo

Selected publications

Picture of microstructure.

T. D. Desissa et.al. Chemical tracer diffusion of Sr and Co in polycrystalline Ca-deficient CaMnO3−δ with CaMn2O4 precipitates, Phys. Chem. Chem. Phys. 20 (2018) 2754-2760.

N. Kanas et.al. Influence of processing on stability, microstructure and thermoelectric properties of Ca3Co4-xO9+δ, J. Eur. Ceram. Soc. 38 (2018) 1592–1599.