DT8122 - Probabilistic Artificial Intelligence


Examination arrangement

Examination arrangement: Approved report
Grade: Passed / Not Passed

Evaluation Weighting Duration Grade deviation Examination aids
Approved report 100/100

Course content

DT8122 is a summer school course and, currently, only participants of the Nordic Probabilistic AI School (ProbAI) can register for the course.

The course is going to be organized in a series of lectures followed by hands-on tutorials. Also, there will be talks covering research and application areas related to the main topics. We will (tentatively) cover the following topics: 1. Probabilistic models, variational inference and probabilistic programming Introduction to probabilistic modelling: - Bayesian modelling: prior, likelihood and posterior - Concepts of Bayesian networks and latent-variable models - Posterior inference and parameter learning - Modelling techniques Variational inference: - Mean-field, CAVI and conjugate models - Stochastic Variational Inference and Optimization - Black-box variational inference - Automatic Differentiation Variational inference Probabilistic programming: - Introduction to the concept of probabilistic programming - Language syntax and semantics - Inference mechanisms 2. Deep Generative Models Introduction to Deep Learning: - Examples of models - Stochastic optimization and backpropagation Variational Auto-Encoders Bayesian Neural Networks Combining classical neural networks and probabilistic models

Learning outcome

The main outcome of the course is to learn the principles of probabilistic models and deep generative models in Machine Learning and Artificial Intelligence, and acquiring skills for using existing tools that implement those principles (probabilistic programming languages). Knowledge: The student will learn the theory of probabilistic modelling, variational inference, probabilistic programming and deep generative models. Skills: Model designing, inference and programming with probabilistic models and deep generative models for a certain number of problems. General competence: Thinking of machine learning and artificial intelligence problems and tasks from the principles of probabilistic modelling.

Further on evaluation

A written evaluation which will be constituted of a report and programming code from each individual student. The student will receive a problem statement with a task and should use the methods and models studied during the summer school to work on the problem. The problem will be a data analysis or machine learning task. The report will be evaluated and graded with passed or failed.

Course materials

Books: - Christopher M. Bishop. Pattern Recognition and Machine Learning. Chapter 10 (63 pages). - Kevin P. Murphy. Machine Learning: a Probabilistic Perspective. Chapter 9, 10 and 21 (92 pages) - Goodfellow et al.: Deep Learning — PART III Deep Learning Research (Ch. 13-20) (235 pages) Papers: - Ranganath, R., Gerrish, S., & Blei, D. . Black box variational inference. In Artificial intelligence and statistics. 2014. - Kingma, D., & Welling, M. Auto-encoding variational Bayes. In International conference on learning representations. 2014. - Cheng Zhang et al. Advances in Variational Inference. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2019. - Ruslan Salakhutdinov. Learning Deep Generative Models. Annual Review of Statistics and Its Application, 2015. - I. Goodfellow at al. Generative adversarial nets. Advances in neural information processing systems. 2014. - Bingham et al. Pyro: Deep Universal Probabilistic Programming. Journal of Machine Learning Research. 2018 Other practical online resources: - Examples of probabilistic modelling with Pyro: - Tutorials, getting-starded and examples for deep learning with PyTorch:

More on the course



Version: 1
Credits:  7.5 SP
Study level: Doctoral degree level


Term no.: 1
Teaching semester:  SPRING 2022

Language of instruction: English

Location: Trondheim

Subject area(s)
  • Computer and Information Science
Contact information
Course coordinator:

Department with academic responsibility
Department of Computer Science


Examination arrangement: Approved report

Term Status code Evaluation Weighting Examination aids Date Time Examination system Room *
Spring ORD Approved report 100/100 INSPERA
Room Building Number of candidates
  • * The location (room) for a written examination is published 3 days before examination date. If more than one room is listed, you will find your room at Studentweb.

For more information regarding registration for examination and examination procedures, see "Innsida - Exams"

More on examinations at NTNU