course-details-portlet

TKP4140 - Process Control

About

Examination arrangement

Examination arrangement: School exam
Grade: Letter grades

Evaluation Weighting Duration Grade deviation Examination aids
School exam 100/100 4 hours D

Course content

- First-principle modelling of physical-chemical-biological processes. - Transcription into the state-space and linearisation yielding the classical {A,B,C,D} representation: the Linear Time-Invariant System. - Laplace transform and transfer function matrix. Graphical representation as block diagrams and frequency plots with a focus on Bode plots. - Stability for LTI systems: eigenvalue / pole criterion, Nyquist and Routh criterion. - Simple graphical process identification of first-order plus dead-time systems. - Model simplification starting with higher-order transfer functions. - SISO pole-placement design (direct synthesis, IMC) yielding variations of PID controllers. - SIMC PID tuning - On-Off control. - Introduction to computer-controlled systems - Discrete version of PID with filter and anti-windup. - Aliasing and filtering. - Advanced subjects: selection of observability and controllability, similarity transformation, MIMO-systems relative gain array, decoupling, cascade control, feedforward control, selectors, model-predictive control and supervisory control.

Learning outcome

At the end of the course the students should: - Know the fundamentals of modelling and linearization of dynamic processes. - Know basic control theory. - Understand the power and limitations of the feedback principle. - Understand how instability can occur in dynamic systems. - Know how to develop simple dynamic process models. - Know how to tune PID controllers.

Learning methods and activities

Lectures, exercises, compulsory computing and laboratory exercises.

Compulsory assignments

  • Exercises
  • Lab
  • Project

Further on evaluation

If there is a re-sit examination, the examination form may be changed from written to oral.

Specific conditions

Compulsory activities from previous semester may be approved by the department.

Course materials

D.E. Seborg, T.F. Edgar, D.A. Mellichamp: Process Dynamics and Control, Wiley, 4th ed. Hand outs.

Credit reductions

Course code Reduction From To
SIK2050 7.5
More on the course

No

Facts

Version: 1
Credits:  7.5 SP
Study level: Second degree level

Coursework

Term no.: 1
Teaching semester:  AUTUMN 2022

Language of instruction: English

Location: Trondheim

Subject area(s)
  • Technological subjects
Contact information
Course coordinator: Lecturer(s):

Department with academic responsibility
Department of Chemical Engineering

Examination

Examination arrangement: School exam

Term Status code Evaluation Weighting Examination aids Date Time Examination system Room *
Autumn ORD School exam 100/100 D 2022-12-09 09:00
Room Building Number of candidates
Summer UTS School exam 100/100 D
Room Building Number of candidates
  • * The location (room) for a written examination is published 3 days before examination date. If more than one room is listed, you will find your room at Studentweb.
Examination

For more information regarding registration for examination and examination procedures, see "Innsida - Exams"

More on examinations at NTNU