Course - Chemical Engineering - KP3100
Chemical Engineering
About
About the course
Course content
Applied heat and mass transport: applied fluid mechanics, thermodynamic work, heat transport, heat pumps/cooling. Mechanical separation processes: sedimentation, centrifuges, gas purification, filtration and floatation. Chemical processes: stirring. Python will be used for simple problem solving.
Learning outcome
After completing the course, the student will: - have knowledge about applied heat and mass transfer. - have knowledge about mechanical separation processes. - have basic knowledge on process operations. - be able to gather and process necessary information for computations. - be able to perform calculations related to process operations. - be able to understand flow charts and know the symbols of the devices mentioned in the course. - be able to read technical diagrams such as Moodys diagram and thermodynamic state diagrams (i.e. p, h- or h, s- diagram) - be able to make simple sketches of a process for visual communication. - be able to report process parameters in different units and basis (volume, mass, speed). - be able to construct and execute simple numerical models. - be able to use Python for simple numerical modeling. - be able to conduct simple laboratory experiments and write simple lab reports.
Learning methods and activities
Lectures, exercises and laboratory work with mandatory presence. Admission to the exam requires that 70% of the exercises are approved and a report is submitted for the laboratory work. Lectures: 60 hrs, Exercises: 30 hrs, Laboratory work: 15 hrs, Self-study: 95 hrs
Compulsory assignments
- Felleslab
- Exercises
Further on evaluation
The grade is based on a final written exam that counts 100%. In order to take the final written exam, both the compulsory felleslab (lab work) and exercises have to be approved. If there is a re-sit examination, the examination form may be changed from written to oral. For a re-take of an examination, all assessments during the course must be re-taken.
Specific conditions
Admission to a programme of study is required:
Chemistry - Engineering (FTHINGKJ)
Recommended previous knowledge
Physics/Inorganic Chemistry (TKJE1005), Mathematics (TALM1011/TALM1012).
Required previous knowledge
Admission to the course requires admission to BEng in Chemical Engineering (alternatively BEng in Chemistry), NTNU, Trondheim
Course materials
Geankoplis, Transport processes Separation Process Principles, Prentice-Hall, 4. Edition (2014) or newer. Additional lecture notes. Gordon Aylward and Tristan Findlay: SI Chemical data, Wiley 7. edition, 2014.
Credit reductions
Course code | Reduction | From |
---|---|---|
TPRK2002 | 7.5 sp | Autumn 2020 |
Subject areas
- Engineering Subjects
Contact information
Course coordinator
Lecturers
Department with academic responsibility
Examination
Examination
Ordinary examination - Autumn 2025
School exam
The specified room can be changed and the final location will be ready no later than 3 days before the exam. You can find your room location on Studentweb.