course-details-portlet

TFY4220

Solid State Physics

Credits 7.5
Level Second degree level
Course start Spring 2013
Duration 1 semester
Language of instruction Norwegian
Examination arrangement Written examination

About

About the course

Course content

Atomic structure; Order and disorder, Lattices and unit cells, Crystal directions and planes, Non-crystalline structures, Interatomic bonding, Van der Waals solids, Metallic solids, Ionic solids, Covalent solids, Symmetry, Reciprocal space, Brillouin zones, Structure determination. Lattice vibrations; The continuum approximation, Vibrations of periodic systems, Quantization of vibrational modes: Phonons, Crystal momentum, Heat capacity, Anharmonicity. Static electron systems; Free electron gas, Fermi-Dirac distribution, Electrons in periodic solids, Nearly-free-electron model, Brillouin zones and energy bands, Tight-binding approximation. Dynamic electron systems; Free-electron gas, Periodic solids, Intrinsic semiconductors, Extrinsic semiconductors. Dia- and paramagnetism, ferro- and antiferromagnetism.

Learning outcome

Students should gain basic knowledge of solid state physics - crystal structures, diffraction and reciprocal lattice, bonding in crystals, phonons and thermal properties of materials, free electron model, energy bands and semiconductors.
This means that the students should
- know and recognize the different crystal structures and understand basic crystallography
- know how we study crystalline materials with diffraction, know what Brillouin zones, Ewald sphere and scattering amplitudes are
- learn what a reciprocal lattice is and how we use it
- know about different types of bonding in materials
- know what phonons are and be able to find dispersion relations for one-dimensional lattices
- learn about heat capacity and the different thermal properties related to phonons
- learn about the free electron model
- understand weak periodic potentials and the introduction of Bloch functions
- understand energy bands, energy gaps and semiconductors, learn about pn-junctions and principles of semiconductor technology
- know what a Fermi surface is, and principles of how to find such.

Learning methods and activities

Lectures, home work problems and mandatory laboratory exercises. A re-sit examination may be changed from written to oral.

Compulsory assignments

  • Laboratory exercises

Course materials

Charles Kittel: Introduction to solid state physics, 8th ed., Wiley.

Credit reductions

Course code Reduction From
SIF4052 7.5 sp
TFE4215 7.5 sp
This course has academic overlap with the courses in the table above. If you take overlapping courses, you will receive a credit reduction in the course where you have the lowest grade. If the grades are the same, the reduction will be applied to the course completed most recently.

Subject areas

  • Physics
  • Technological subjects

Contact information

Department with academic responsibility

Department of Physics

Examination

Examination

Examination arrangement: Written examination
Grade: Letters

Ordinary examination - Spring 2013

Written examination
Weighting 100/100 Date 2013-05-28 Time 09:00 Duration 4 timer Place and room Not specified yet.