Background and activities

I am the Director of the Industrial Ecology Programme at NTNU.

My main research interests are in the field of i) modeliing and quantification of climate change impacts from anthropogenic emissions and disturbances of terrestrial ecosystems, ii) environmental sustainability analysis (e.g., LCA), iii) sustainable land management, and iv) analysis and process development of advanced biofuels and biorefinery systems.

I am teaching the graduate course "Climate Change Mitigation" (TEP 4300). I am currently serving as Lead Author in the forthcoming IPCC Special Report on Climate Change and Land, I am co-chairing the Global Warming Task Force of the UNEP-SETAC Life-Cycle Initiative, and I am member of the steering committee of the commission of Geography for Future Earth: Coupled Human-Earth Systems for Sustainability. I am the National Task Leader for Norway of the IEA Bioenergy Task 45 "Climate and Sustainability Effects of Bioenergy within the broader Bioeconomy".


Main active projects

2019 / 2022 Advancing biofuel pathways with regional climate change implications (BIOPATH)

2019 / 2022 Strategies to mitigate pressures on terrestrial ecosystems from multiple stressors (MITISTRESS)

2019 / 2022 Bioenergy's role in a sustainable future: An assessment of environment, technology, supply chains and uncertainty (BEST)

2018 / 2022 Implementing biochar-fertilizer solution in Norway for climate and food production benefits (CARBO-FERTIL)

2018 / 2021 Environmental sustainability analysis of advanced biofuels in Norway

2017 / 2024 Norwegian Centre for Sustainable Bio-based Fuels (FME Bio4Fuels)

2017 / 2021 Advancing characterization of climate change impacts in LCA

2016 / 2020 Quantifying climate Impacts of Future Forest management strategies in Norway (QUIFFIN)

2015 / 2019 Comparative climate impact assessment of the forest based bio-economies of Norway, Sweden and Finland (Bio4Clim)


Scientific publications (Scopus, Google Scholar)


  • Hu, X., B. Huang, F. Cherubini (2019) Impacts of idealized land cover changes on climate extremes in Europe. Ecological Indicators, 104: 626-635.
  • Tanaka, K., O. Cavalett, W. J. Collins, and F. Cherubini (2019) Asserting the climate benefits of the coal-to-gas shift across temporal and spatial scales. Nature Climate Change, 9: 389396.


  • Cavalett O. and F. Cherubini  (2018) Contribution of jet fuel from forest residues to multiple Sustainable Development Goals, Nature Sustainability 1: 799807.

  • Cavalett, O., S. Norem Slettmo and F. Cherubini (2018). Energy and Environmental Aspects of Using Eucalyptus from Brazil for Energy and Transportation Services in Europe. Sustainability 10(11): 4068.

  • Hu, X., Cherubini, F., Vezhapparambu, S., & Strømman, A. H. (2018). From remotely‐sensed data of Norwegian boreal forests to fast and flexible models for estimating surface albedo. Journal of Advances in Modeling Earth Systems, 10, 2495-2513.

  • Cherubini F., Francesca Santaniello, Xiangping Hu, Johan Sonesson, Anders Hammer Strømman, Jan Weslien, Line B. Djupström & Thomas Ranius (2018) Climate impacts of retention forestry in a Swedish boreal pine forest, Journal of Land Use Science, 13 (3), 17.
  • Iordan C., X. Hu, A. Arvesen, P. Kauppi and F. Cherubini (2018) Contribution of forest wood products to negative emissions: historical comparative analysis from 1960 to 2015 in Norway, Sweden and Finland. Carbon Balance and Management 13:12

  • Cherubini, F., Huang, B., Hu, X., Toelle M., Strømman, A.H. (2018). Quantifying the climate response to extreme land cover changes in Europe with a regional model. Environmental Research Letters, 13 074002.

  • Hu, X., Iordan, C., Cherubini, F. (2018) Estimating future wood outtakes in the Norwegian forestry sector under the shared socioeconomic pathways. Global Environmental Change 50: 15-24.

  • Jolliet, O.,  Antón A., Boulay A.M., Cherubini, F., Fantke, P., Levasseur, A., McKone, T., Michelsen, O., Milà i Canals, L., Motoshita, M., Pfister, S., Verones, F., Vigon, B., Frischknecht, R. (2018) Global guidance on environmental life cycle impact assessment indicators: impacts of climate change, fine particulate matter formation, water consumption and land use, The International Journal of Life Cycle Assessment, 23 (11), 2189–2207.
  • Arvesen, A., Cherubini F., et al. (2018) Cooling aerosols and changes in albedo counteract warming from CO2 and black carbon from forest bioenergy in Norway. Nature Scientific Reports 8(1): 3299.
  • Iordan, C. M., Verones F., Cherubini F. (2018). Integrating impacts on climate change and biodiversity from forest harvest in Norway. Ecological Indicators 89: 411-421.
  • Hanserud, O. S., Cherubini, F., Øgaard, A. F., Muller, D. B., Brattebø, H. (2018) Choice of mineral fertilizer substitution principle strongly influences LCA environmental benefits of nutrient cycling in the agri-food system. Science of The Total Environment 615: 219-227.


  • Tanaka, K., Cherubini, F., Levasseur, A. (2017) Unmask temporal trade-offs in climate policy debates: but how? Science, eLetter,

  • Cherubini, F., Vezhapparambu, S., Bogren, W., Astrup, R., Strømman, A.H.(2017). Spatial, seasonal, and topographical patterns of surface albedo in Norwegian forests and cropland. International Journal of Remote Sensing 38(16): 4565-4586.

  • Lausselet, C., Cherubini, F., et al., (2017) Norwegian Waste-to-Energy: Climate change, circular economy and carbon capture and storage, Resources, Conservation and Recycling, 126: 50-61.

  • Levasseur, A., de Schryver, A., Hauschild, M., Kabe, Y., Sahnoune, A., Tanaka, K., Cherubini, F.  (2017). Greenhouse gas emissions and climate change impacts. Global Guidance for Life Cycle Impact Assessment Indicators - Volume 1. Ed.: R. Frischknecht and O. Jolliet, UNEP/SETAC Life Cycle Initiative. Chapter 3: 59-75. Available at
  • Oreggioni, G. D., Singh, B., Cherubini, F., Guest, G., Lausselet, C., Luberti, M., Ahn, H., Strømman, A.H. (2017). Environmental assessment of biomass gasification combined heat and power plants with absorptive and adsorptive carbon capture units in Norway. International Journal of Greenhouse Gas Control, 57: 162-172.


  • Cherubini F., and Tanaka K. (2016), Amending the Inadequacy of a Single Indicator for Climate Impact Analyses, Environmental Science and Technology, 50(23): 12530–12531.

  • Iordan C., Lausselet, C., Cherubini, F. (2016) Life-cycle assessment of a biogas power plant with application of different climate metrics and inclusion of near-term climate forcers, Journal of Environmental Management, 184:517-527.

  • Lausselet, C, Cherubini, F., del Alamo Serrano, G., Becidan, M., Strømman, A.H. (2016) Life-cycle assessment of a Waste-to-Energy plant in central Norway: Current situation and effects of changes in waste fraction composition, Waste Management, 58:191-201.

  • Levasseur, A., Cavalett, O., Fuglestvedt, J. S., Gasser, T., Johansson, D. J. A., Jørgensen, S. V., Raugei, M., Reisinger, A., Schivley, G., Strømman, A., Tanaka, K., Cherubini, F. (2016). Enhancing life cycle impact assessment from climate science: Review of recent findings and recommendations for application to LCA. Ecological Indicators, 71, 163-174.

  • Cherubini, F., Fuglestvedt, J. S., Gasser, T., Reisinger, A., Cavalett, O., Huijbregts, M., Johansson, D.J.A., Jørgensen, S.V., Raugei, M. Schivley, G., Strømman, A., Tanaka, K., Levasseur, A. (2016). Bridging the gap between impact assessment methods and climate science. Environmental Science & Policy, 64, 129-140.

  • Cherubini, F., M.Huijbregts, G. Kinderman, R. Van Zelm, M. Van Der Velde, K. Stadler, A. Hammer Strømman (2016) Global spatially explicit CO2 emission metrics for forest bioenergy, Nature Scientific Reports 6, 20186.

  • Frischknecht, R.; Fantke, P.; Tschümperlin, L.; Niero, M.; Anton, A.; Bare, J.; Boulay, A.-M.; Cherubini, F.; Hauschild, M.; Henderson, A.; Levasseur, A.; McKone, T.; Michelsen, O.; Mila i Canals, L.; Pfister, S.; Ridoutt, B.; Rosenbaum, R.; Verones, F.; Vigon, B.; Jolliet, O. (2016) Global guidance on environmental life cycle impact assessment indicators: progress and case study. The International Journal of Life Cycle Assessment, 21(3): 429–442.

  • Boschiero, M., Cherubini F., Nati C., Zerbe S. (2016) Life cycle assessment of bioenergy production from orchards woody residues in Northern Italy. Journal of Cleaner Production 112: 2569-2580.

  • Ridoutt B.G., S. Pfister, A. Manzardo, J. Bare, A.M. Boulay, F. Cherubini, P. Fantke, R. Frischknecht, M. Hauschild, A. Henderson, O. Jolliet, A. Levasseur, M. Margni, T. McKone, O. Michelsen, L. Milà i Canals, G. Page, R. Pant, M. Raugei, S. Sala, F. Verones (2016) Area of concern: a new paradigm in life cycle assessment for the development of footprint metrics. The International Journal of Life Cycle Assessment, 21(2): 276–280.


  • Bright, R. M., Zhao, K., Jackson, R., Cherubini, F.  (2015) Quantifying surface albedo changes and direct biogeophysical climate forcings of forestry activities.  Global Change Biology, 21:  3246-3266.
  • B. Ridoutt, P. Fantke, S. Pfister, J. Bare, A.-M. Boulay, F. Cherubini, R. Frischknecht, M. Hauschild, S. Hellweg, A. Henderson, O. Jolliet, A. Levasseur, M. Margni, T. McKone, O. Michelsen, L. Milà i Canals, G. Page, R. Pant, M. Raugei, S. Sala, E. Saouter, F. Verones, and T. Wiedmann, (2015) Making Sense of the Minefield of Footprint Indicators, Environ. Sci. Technol., 2015, 49 (5), pp 2601–2603.


  • Cherubini, F., Gasser, T., Bright, R. M., Ciais, P., Strømman, A. H., (2014)  Linearity between temperature peak and bioenergy CO2 emission rates, Nature Climate Change, 4: 983-987.
  • Jørgensen, S. V., Cherubini. F., Michelsen, O. (2014). Biogenic CO2 fluxes, changes in surface albedo and biodiversity impacts from establishment of a miscanthus plantation. Journal of Environmental Management 146(0): 346-354.
  • Creutzig, F., ... Cherubini, F., et al., (2014) Bioenergy and climate change mitigation:  An assessment. Global Change Biology Bioenergy, 7(5): 916–944.
  • Bruckner, T., Bashmakov, I.A., Mulugetta, Y., ... Cherubini, F., et al. (2014) Chapter 7: Energy Systems, In Mitigation of Climate Change, Contribution by Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC).
  • Smith, P., Bustamante M., ... Cherubini, F., et al., (2014) Chapter 11:  Agriculture, Forestry, and Other Land Use (AFOLU).  In Mitigation of Climate Change, Contribution by Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC).
  • Bright, R. M., Anton-Fernandez, C., Astrup, R., Cherubini, F., Kvalevåg, M. M., Strømman, A. H., (2014) Climate change implications of shifting forest management strategy in a boreal forest ecosystem of Norway, Global Change Biology, 20(2):  607-621.


  • Cherubini F., and Strømman A.H. (2013) Bioenergy vs. Natural Gas for Production of District Heat in Norway: Climate Implications, Energy Procedia 40: 137-145.
  • Cherubini F., Guest G. and Strømman A.H. (2013) Bioenergy from forestry and changes in atmospheric CO2: Reconciling single stand and landscape level approaches, Journal of Environmental Management 129: 292-301.
  • Guest G., Bright R.M., Cherubini F., Strømman A.H. (2013) Consistent quantification of climate impacts due to biogenic carbon storage across a range of bio-product systems, Environmental Impact Assessment Review, 43: 21-30.
  • Cherubini F., Bright R.M., and Strømman A.H. (2013) Corrigendum: Global climate impacts of forest bioenergy: what, when and how to measure? Environmental Research Letters, 8 029503.
  • Cherubini F., Bright R.M., and Strømman A.H. (2013) Global climate impacts of forest bioenergy: what, when and how to measure? Environmental Research Letters, 8 014049.
  • Cherubini F., Strømman A.H., Hertwich E. (2013) Biogenic CO2 fluxes from bioenergy and climate—A response, Ecological Modelling, 253: 79– 81.
  • Cherubini, Francesco, Guest G., Strømman A.H. (2013) Application of probability distributions to the modeling of biogenic CO2 fluxes in life cycle assessment - Corrigendum. Global Change Biology Bioenergy, 5(4): 474.
  • Guest G., Cherubini F., Strømman A.H. (2013), Global Warming Potential of CO2 emissions from biomass stored in the anthroposphere and used for bioenergy at end of life, Journal of Industrial Ecology, 17: 20-30.


  • Guest G., Cherubini F., and Strømman A.H. (2012) Climate impact potential of utilizing forest residues for bioenergy in Norway, Mitigation and Adaptation Strategies for Global Change, 18(8): 1089-1108.
  • Cherubini F., Bright R.M., and Strømman A.H. (2012) Site-specific global warming potentials of biogenic CO2 for bioenergy: contributions from carbon fluxes and albedo dynamics, Environmental Research Letters, 7 045902.
  • Guest G., Cherubini F., and Strømman A.H. (2012) The role of forest residues in the accounting for the global warming potential of bioenergy, Global Change Biology Bioenergy, 5: 459-466.
  • Brigth R.M., Cherubini F., Astrup R., Bird N., Cowie A.L., Ducey M.J., Marland G., Pingoud K., Savolainen I., Strømman A.H. (2012) A comment to “Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral”: Important insights beyond greenhouse gas accounting, Global Change Biology Bioenergy, 4: 617-619.
  • Cherubini F., Guest G. and Strømman A.H. (2012) Application of probability distributions to the modeling of biogenic CO2 fluxes in LCA. Global Change Biology Bioenergy, 4: 784-798.
  • Bright R.M., Cherubini F., Strømman A.H. (2012), Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment, Environmental Impact Assessment Review, 37: 2-11.


  • Guest G., Bright R.M., Cherubini F., Michelsen O., Strømman A.H. (2011), Life Cycle Assessment of bio-fuelled Combined Heat and Power plants: centralized versus decentralized deployment strategies, Journal of Industrial Ecology, 15: 908-921.
  • Cherubini F. and Strømman A.H. (2011) Principles of biorefining, In  A. Pandey et al. (Eds), Biofuels – Alternative feedstocks and conversion processes, Elsevier, Burlington: Academic Press, 2011, pp. 3-24 (DOI:10.1016/B978-0-12-385099-7.00001-2).
  • Michelsen O., Cherubini F., Strømman A.H. (2011), Impact Assessment of Biodiversity and Carbon Pools from Land Use and Land Use Changes in Life Cycle Assessment, Exemplified with Forestry Operations in Norway, Journal of Industrial Ecology, 16: 231-242.
  • Cherubini F., Strømman A.H., Hertwich E. (2011), Climate impact of CO2 emissions from bioenergy: effect of management practices of boreal forests, Ecological modeling, 223: 59-66.
  • Cherubini F., Peters G., Berntsen T., Strømman A.H., Hertwich E. (2011), CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming, Global Change Biology Bioenergy, 3: 416-426.  
  • Cherubini F. and Strømman A.H. (2011), Chemicals from lignocellulosic biomass: opportunities, perspectives and potentials of biorefinery systems, Biofuels, Bioproducts and Biorefining, 5: 548-561.
  • Cherubini F., Strømman A.H., Ulgiati S. (2011), Influence of allocation methods on the environmental performance of biorefinery products—A case study, Resources Conservation and Recycling, 55: 1070-1077.
  • Cherubini F. and Strømman A.H. (2011), Life Cycle Assessment of bioenergy systems: State of the art and future challenges, Bioresource Technology, 102: 437-451.
  • Ulgiati S., Ascione M., Bargigli S., Cherubini F., Franzese P., Raugei M., Viglia S., Zucaro A. (2011) Material, energy and environmental performance of technological and social systems under a Life Cycle Assessment perspective. Ecological Modelling 222:176-189.


  • Cherubini F. and Strømman A.H. (2010), Production of biofuels and biochemicals from lignocellulosic biomass: estimation of maximum theoretical yields and efficiencies using matrix algebra, Energy & Fuels, 24: 2657–2666.
  • Cherubini F. (2010), GHG balances of bioenergy systems – Overview of key steps in the production chain and methodological concerns, Renewable Energy 35: 1565-1573.
  • Cherubini F. (2010), The biorefinery concept: using biomass instead of oil for producing energy and chemicals, Energy Conversion and Management 51: 1412-1421.
  • Ulgiati S., Ascione M., Bargigli S., Cherubini F., Federici M., Franzese P., Raugei M., Viglia S., Zucaro A. (2010) Multi-method and multi-scale analysis of energy and resource use, In Babir F. and Ulgiati S. (Eds), Energy Options and Impact on Regional Security, Springer Netherlands, pp. 1-36 (DOI: 10.1007/978-90-481-9565-7_1).
  • Cherubini F. and Jungmeier G. (2010), LCA of a biorefinery concept producing bioethanol, bioenergy and chemicals from switchgrass, International Journal of LCA, 15: 53-66.
  • Cherubini F. and Ulgiati S. (2010), Crop residues as raw materials for biorefinery systems – A LCA case study, Applied Energy 87: 47-57. 


  • Cherubini F., Bird N., Cowie A., Jungmeier G., Schlamadinger B., Woess-Gallasch S. (2009).  Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations, Resources, Conservation and Recycling 53: 434-447.
  • Cherubini F., Jungmeier G., Wellisch M., Willke T., Skiadas I., Van Ree R., de Jong E. (2009), Towards a common classification approach for biorefinery systems, Biofuels, Bioproducts & Biorefining, 3 (5): 534-546.
  • Ascione M., L. Campanella, F. Cherubini, S. Ulgiati (2009), Environmental driving forces of urban growth and development: An emergy-based assessment of the city of Rome, Italy, Landscape and Urban Planning, 93: 238-249.
  • Cherubini F. and Jungmeier G. (2009), Energy and material recovery from biomass: the Biorefinery approach. Concept overview and environmental evaluation, In E. DuBois and A. Mercier (Eds),  Energy Recovery, Nova Science Publisher, pp. 97-139 (ISBN 978-1-60741-065-2).
  • Cherubini F., Bargigli S., Ulgiati S. (2009), Life Cycle Assessment of waste management strategies: landfilling, sorting plant and incineration, Energy, 34: 2116-2123.


  • Cherubini F., Raugei M. and Ulgiati S. (2008), LCA of Magnesium production. Technological overview and worldwide estimation of environmental burdens, Resources, Conservation and Recycling, 52: 1093-1100.
  • Cherubini F., Bargigli S., Ulgiati S. (2008), Life Cycle Assessment of Urban Waste Management: Energy Performances and Environmental Impacts. The Case of Rome, Italy, Waste Management, 28: 2552-2564.
  • Ascione M., L. Campanella, F. Cherubini, S. Bargigli and S. Ulgiati (2008), The Material and Energy Basis of Rome: An Investigation of Direct and Indirect Resource Use through Material Flow, Energy and Footprint Methods, Journal ChemSusChem, 1: 450 – 462.