Maria Fernandino
Background and activities
I am director of the Thermal Two-Phase Flow Laboratory at the Department of Energy and Process Technology, NTNU.
My reserach interests are within multiphase flows, with focus on the oil and gas industry. I find the combination of experimental work and numerical simulations essential for the better understanding of these types of flow phenomena.
I have an engineering degree in Nuclear Engineering from Balseiro Institute, Argentina, and a PhD degree in Fluid Mechanics from the Norwegian University of Science and Technology, NTNU, Norway.
Main areas of research
- Two-phase flow (simulations and experiments)
- Two-phase flow heat transfer (boiling and condensation in tubes)
- Gas-liquid and liquid-liquid separation in the oil & gas industry
- Numerical methods for droplet and bubble dynamics (interfacial phenomena)
Courses
- TEP4100 Fluid Mechanics
- EP8404 Multiphase Flow
- EP8409 Microfluidics
Scientific, academic and artistic work
A selection of recent journal publications, artistic productions, books, including book and report excerpts. See all publications in the database
Journal publications
- (2020) A redefined energy functional to prevent mass loss in phase-field methods. AIP Advances. vol. 10 (6).
- (2020) The overlooked role of pressure oscillations on heat transfer deterioration during self-sustained flow oscillations. Applied Physics Letters. vol. 117 (25).
- (2019) Can Wicking Control Droplet Cooling?. Langmuir. vol. 35.
- (2019) A new simplified model for condensation heat transfer of zeotropic mixtures inside horizontal tubes. Applied Thermal Engineering. vol. 153.
- (2019) Conical micro-structures as a route for achieving super-repellency in surfaces with intrinsic hydrophobic properties. Applied Physics Letters. vol. 115 (5).
- (2019) On the heat transfer deterioration during condensation of binary mixtures. Applied Physics Letters. vol. 114 (17).
- (2019) Law of resistance in two-phase flows inside pipes. Applied Physics Letters. vol. 114 (17).
- (2019) Water-repellent surfaces consisting of nanowires on micro-pyramidal structures. ACS Applied Nano Materials. vol. 2 (12).
- (2018) Water droplet dynamics on a heated nanowire surface. Applied Physics Letters. vol. 113 (25).
- (2018) Water droplet impacting on overheated random Si nanowires. International Journal of Heat and Mass Transfer. vol. 124.
- (2018) Can the heat transfer coefficients for single-phase flow and for convective flow boiling be equivalent?. Applied Physics Letters. vol. 112 (6).
- (2018) Simple and general correlation for heat transfer during flow condensation inside plain pipes. International Journal of Heat and Mass Transfer. vol. 122.
- (2018) Experimental study on the characteristics of pressure drop oscillations and their interaction with short-period oscillation in a horizontal tube. International journal of refrigeration. vol. 91.
- (2018) On the occurrence of superimposed density wave oscillations on pressure drop oscillations and the influence of a compressible volume. AIP Advances. vol. 8 (7).
- (2018) Wetting State Transitions over Hierarchical Conical Microstructures. Advanced Materials Interfaces. vol. 5 (5).
- (2018) Can flow oscillations during flow boiling deteriorate the heat transfer coefficient?. Applied Physics Letters. vol. 113 (15).
- (2018) Thermal two-phase flow with a phase-field method. International Journal of Multiphase Flow. vol. 100.
- (2018) C1continuous h-adaptive least-squares spectral elementmethod for phase-field models. Computers and Mathematics with Applications. vol. 75 (5).
- (2018) Numerical solution of cahn-hilliard system by adaptive least-squares spectral element method. Lecture Notes in Computer Science (LNCS). vol. 10665 LNCS.
- (2017) Experimental Study of Horizontal Flow Boiling Heat Transfer of R134a at a Saturation Temperature of 18.6 °C. Journal of heat transfer. vol. 139 (11).