course-details-portlet

BA8108

Thermal Building Insulation Materials

New from the academic year 2012/2013

Credits 10
Level Doctoral degree level
Course start Autumn 2012
Duration 1 semester
Language of instruction English and norwegian
Examination arrangement Oral examination

About

About the course

Course content

The course Thermal Building Insulation Materials addresses traditional, state-of-the-art and possible future thermal building insulation materials, with respect to properties, requirements and possibilities. Basic thermal transport properties are treated, including solid state, gas, radiation and convection conductance. The advantages and disadvantages of the miscellaneous building insulation materials and solutions are discussed. Examples of insulation materials are mineral wool, expanded polystyrene, extruded polystyrene, polyurethane, vacuum insulation panels, gas insulation panels, aerogels, and future possibilities like vacuum insulation materials, nano insulation materials and dynamic insulation materials. Various properties, requirements and possibilities are compared and studied. Among these are thermal conductivity, perforation vulnerability, building site adaptability and cuttability, mechanical strength, fire protection, fume emission during fire, robustness, climate ageing durability, resistance towards freezing/thawing cycles, water resistance, costs and environmental impact.

Currently, there exist no single insulation material or solution capable of fulfilling all the requirements with respect to the most crucial properties. That is, for the buildings of today and the near future, several insulation materials and solutions are used and will have to be used depending on the exact circumstances and specifications. As of today, new materials and solutions like e.g. vacuum insulation panels are emerging, but only slowly introduced in the building sector partly due to their short track record. Therefore it will be of major importance to know the limitations and possibilities of all the insulation materials and solutions, i.e. their advantages and disadvantages. In this respect new conceptual thermal building insulation materials are also investigated.

Learning outcome

Knowledge, skills and general competence:

Obtain an overview and deeper insight about the properties, requirements and possibilities, including advantages and disadvantages, about:
- Traditional thermal building insulation materials.
- State-of-the-art thermal building insulation materials.
- Possible future thermal building insulation materials like e.g. nano insulation materials (NIM) and dynamic insulation materials (DIM).

Obtain an overview and deeper insight about various thermal transport mechanisms, i.e.:
- Solid state thermal transport.
- Gas thermal transport.
- Radiation thermal transport.
- Convection thermal transport.
- Leakage thermal transport.
- Solid state and gas thermal transport interactions.
- Thermal transport term accounting for second order effects between the various thermal conductivities given above.

Investigate, discuss and explore the possibilties of inventing and making novel high performance thermal building insulation materials.

Learning methods and activities

The tuition will be mainly based on a guided self-tuition. A few
introductory and summary lectures will be given, though.

Required previous knowledge

- General knowledge about building materials and building physics.
- Basic thermal transport knowledge.
- Basic knowledge in mathematics, physics and chemistry.

Course materials

The curriculum is based on the scientific journal articles given in the literature list below, which may be subject to changes:
M. Alam, H. Singh and M. C. Limbachiya, ”Vacuum Insulation Panels (VIPs) for Building Construction Industry – A Review of the Contemporary Developments and Future Directions”, Applied Energy, 88, 3592 3602, 2011.
M. S. Al Homoud, ”Performance Characteristics and Practical Applications of Common Building Thermal Insulation Materials”, Building and Environment, 40, 353 366, 2005.
R. Baetens, B. P. Jelle, J. V. Thue, M. J. Tenpierik, S. Grynning, S. Uvsløkk and A. Gustavsen, ”Vacuum Insulation Panels for Building Applications: A Review and Beyond”, Energy and Buildings, 42, 147 172, 2010.
R. Baetens, B. P. Jelle and A. Gustavsen, ”Phase Change Materials for Building Applications: A State of the Art Review”, Energy and Buildings, 42, 1361 1368, 2010.
R. Baetens, B. P. Jelle, A. Gustavsen and S. Grynning, ”Gas Filled Panels for Building Applications: A State of the Art Review”, Energy and Buildings, 42, 1969 1975, 2010.
R. Baetens, B. P. Jelle and A. Gustavsen, ”Aerogel Insulation for Building Applications: A State of the Art Review”, Energy and Buildings, 43, 761 769, 2011.
S. Basu and Z. M. Zhang, ”Maximum Energy Transfer in Near Field Thermal Radiation at Nanometer Distances”, Journal of Applied Physics, 105, 093535 1 093535 6, 2009.
S. A. Biehs, E. Rousseau and J. J. Greffet, ”Mesoscopic Description of Radiative Heat Transfer at the Nanoscale”, Physical Review Letters, 105, 234301 1 234301 4, 2010.
S. Brunner, Ph. Gasser, H. Simmler, K. Ghazi, ”Investigation of Multilayered Aluminium-coated Polymer Laminates by Focused Ion Beam (FIB) Etching”, Surface & Coatings Technology, 200, 5908–5914, 2006.
F. Domínguez Muñoz, B. Anderson, J. M. Cejudo López, A. Carrillo Andrés, ”Uncertainty in the Thermal Conductivity of Insulation Materials”, Energy and Buildings, 42, 2159 2168, 2010.
S. Grynning, B. P. Jelle, S. Uvsløkk, A. Gustavsen, R. Baetens, R. Caps and V. Meløysund, ”Hot Box Investigations and Theoretical Assessments of Miscellaneous Vacuum Insulation Panel Configurations in Building Envelopes”, Journal of Building Physics, 34, 297 324, 2011.
X. J. Hu, J. H. Du, S. Y. Lei and B. X. Wang, ”A Model for the Thermal Conductivity of Unconsolidated Porous Media based on Capillary Pressure Saturation Relation”, International Journal of Heat and Mass Transfer, 44, 247 251, 2001.
B. P. Jelle, A. Gustavsen and R. Baetens, ”The Path to the High Performance Thermal Building Insulation Materials and Solutions of Tomorrow”, Journal of Building Physics, 34, 99 123, 2010.
B. P. Jelle, ”Traditional, State-of-the-Art and Future Thermal Building Insulation Materials and Solutions - Properties, Requirements and Possibilities”, Energy and Buildings, 43, 2549 2563, 2011.
K. Joulain, J. P. Mulet, F. Marquier, R. Carminati and J. J. Greffet, ”Surface Electromagnetic Waves Thermally Excited: Radiative Heat Transfer, Coherence Properties and Casimir Forces Revisited in the Near Field”, Surface Science Reports, 57, 59 112, 2005.
J. J. Loomis and H. J. Maris, ”Theory of Heat Transfer by Evanescent Electromagnetic Waves”, Physical Review B, 50, 18517 18524, 1994.
J. P. Mulet, K. Joulain, R. Carminati and J. J. Greffet, ”Enhanced Radiative Heat Transfer at Nanometric Distances”, Microscale Thermophysical Engineering, 6, 209 222, 2002.
A. M. Papadopoulos, ”State of the Art in Thermal Insulation Materials and Aims for Future Developments”, Energy and Buildings, 37, 77 86, 2005.
K. Raed and U. Gross, ”Modeling of Influence of Gas Atmosphere and Pore-Size Distribution on the Effective Thermal Conductivity of Knudsen and Non-Knudsen Porous Materials”, International Journal of Thermophysics, 30, 1343 1356, 2009.
E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier and J. J. Greffet, ”Radiative Heat Transfer at the Nanoscale”, Nature Photonics, 3, 514 517, 2009.
H. Simmler and S. Brunner, ”Vacuum Insulation Panels for Building Application - Basic Properties, Ageing Mechanisms and Service Life”, Energy and Buildings, 37, 1122 1131, 2005.
E. Sveipe, B. P. Jelle, E. Wegger, S. Uvsløkk, S. Grynning, J. V. Thue, B. Time and A. Gustavsen, ”Improving Thermal Insulation of Timber Frame Walls by Retrofitting with Vacuum Insulation Panels – Experimental and Theoretical Investigations”, Accepted for publication in Journal of Building Physics, 2011.
A. I. Volokitin and B. N. J. Persson, ”Near Field Radiative Heat Transfer and Noncontact Friction”, Reviews of Modern Physics, 79, 1291 1329, 2007.
K. Ghazi Wakili, T. Stahl and S. Brunner, ”Effective Thermal Conductivity of a Staggered Double Layer of Vacuum Insulation Panels”, Energy and Buildings, 43, 1241 1246, 2011.
E. Wegger, B. P. Jelle, E. Sveipe, S. Grynning, A. Gustavsen, R. Baetens and J. V. Thue, ”Ageing Effects on Thermal Properties and Service Life of Vacuum Insulation Panels”, Accepted for publication in Journal of Building Physics, 2011.
G. Wei, Y. Liu, X. Zhang, F. Yu and X. Du, ”Thermal Conductivities Study on Silica Aerogel and its Composite Insulation Materials”, International Journal of Heat and Mass Transfer, 54, 2355 2366, 2011.

Subject areas

  • Building and Material Technology
  • Building Materials
  • Building Materials
  • Solid State Physics
  • Solid State Theory
  • Physics
  • Chemistry
  • Radiation Physics
  • Teoretisk faststoff-fysikk
  • Theoretical Physics
  • Thermal Energy

Contact information

Course coordinator

Examination

Examination

Examination arrangement: Oral examination
Grade: Letters

Ordinary examination - Autumn 2012

Muntlig
Weighting 100/100

Ordinary examination - Spring 2013

Muntlig
Weighting 100/100