BA8202 - Advanced Physical Geodesy


Examination arrangement

Examination arrangement: Oral exam
Grade: Passed / Not Passed

Evaluation Weighting Duration Grade deviation Examination aids
Oral exam 100/100 1 hours E

Course content

Potential theory, Geodetic Boundary Value Problem, Stokes-Helmert method of geoid computation, Kernel modification in Stokes's integral, Topographic corrections with integral formulas and spherical harmonic procedure, Atmospheric corrections, Global gravity models, Gravity field parameter computations and recent developments in research within physical geodesy.

Learning outcome

Learning objective: After completing the course the candidate shall have an in-depth understanding of Earth’s gravity field and its parameters. Knowledge: After completing the course, the candidate shall have knowledge about how Earth’s gravity fields affects objects and measurements made on and above Earth’s surface, knowledge of methods and techniques for Erath’s gravity field determination, especially satellite gravity field modeling, knowledge of Earth’s gravity field parameters computations, analysis of the results and their applications in Oceanography, Geophysics, Marine and climate change studies. Skills: After completing the course, the candidate shall be able to perform geoid model computations including its sophisticated correction terms, be able to calculate other parameters of Earth’s gravity fields including analysis and interpretation of the results, be able to combine terrestrial and satellite gravity models, be able to use the Earth’s gravity field parameters, like geoid, within other disciplines like Oceanography and Geophysics. General competence: After completing the course, the candidate shall have obtained ability to work independently and in a team towards relevant research front in Physical Geodesy, ability to identify the physical geodesy’s interface and relation with other related disciplines, ability to understand the international perspective of Physical geodesy and be able to cooperate internationally.

Learning methods and activities

The course will be given as conducted self-tuition, with one project which should be approved before exam.

Compulsory assignments

  • Exercise

Specific conditions

Admission to a programme of study is required:
Engineering (PHIV)

Required previous knowledge

Master in geomatics. TBA4565 Geomatics, specialization course and TBA4245 GPS and Geodesy course or equivalent. Note that if you wish to follow the course the semester it runs, but are not affiliated with the PhD programme in Engineering, please contact

Course materials

Heiskanen and Moritz (1967) Physical Geodesy. Moritz (1980) Advanced Physical Geodesy. Nahavandchi (2001) Physical Geodesy. Recent Articles.

More on the course



Version: 1
Credits:  10.5 SP
Study level: Doctoral degree level


Term no.: 1
Teaching semester:  AUTUMN 2023

Language of instruction: English

Location: Trondheim

Subject area(s)
  • Geomatics
  • Geodesy
  • Map subjects
Contact information
Course coordinator: Lecturer(s):

Department with academic responsibility
Department of Civil and Environmental Engineering


Examination arrangement: Oral exam

Term Status code Evaluation Weighting Examination aids Date Time Examination system Room *
Autumn ORD Oral exam 100/100 E 2023-12-15 09:00
Room Building Number of candidates
Spring ORD Oral exam 100/100 E
Room Building Number of candidates
  • * The location (room) for a written examination is published 3 days before examination date. If more than one room is listed, you will find your room at Studentweb.

For more information regarding registration for examination and examination procedures, see "Innsida - Exams"

More on examinations at NTNU