# MA3203 - Ring Theory

### Examination arrangement

Examination arrangement: Oral examination

Evaluation Weighting Duration Grade deviation Examination aids
Oral examination 100/100 D

### Course content

The course is a continuation of MA3201 Rings and modules. It is mainly concerned with discussing finite dimensional algebras over a field. The content of the course may vary, but the core will consist of representations of quivers, path algebras, artinian, noetherian and local rings, projective and injective modules, the Jordan-Hölder Theorem and the Krull-Remak-Schmidt Theorem, radical and socle of modules and rings, exact sequences, categories, functors, equivalence, and duality.

### Learning outcome

1. Knowledge. The student masters the connection between module theory over finite dimensional algebras and representations of quivers. The student has basic knowledge of categories, functors, radical, base, and exact sequences. The student understands the Jordan-Hölder theorem and the Krull-Schmidt theorem.

2. Skills. The student is able to find radicals, bases etc. for special classes of finite dimensional algebras. The student is able to describe the corresponding module if a representation is given, and vice versa. The student is able to find the projective cover of a representation, and to calculate almost exact splitting sequences for given finite dimensional algebras.

### Learning methods and activities

Lectures/video lectures and problem sessions. The lectures will be given in English if they are attended by international students.

### Further on evaluation

In the case that the student receives an F/Fail as a final grade after both ordinary and re-sit exam, then the student must retake the course in its entirety. Submitted work that counts towards the final grade will also have to be retaken. For more information about grading and evaluation, see «Teaching methods and activities».

### Course materials

Auslander, Reiten, Smalø: Representation Theory of Artin algebras.

### Credit reductions

Course code Reduction From To
MNFMA327 7.5
More on the course
Facts

Version: 1
Credits:  7.5 SP
Study level: Second degree level

Coursework

Term no.: 1
Teaching semester:  SPRING 2022

Language of instruction: English, Norwegian

Location: Trondheim

Subject area(s)
• Mathematics
Contact information
Course coordinator:

Department of Mathematical Sciences

# Examination

#### Examination arrangement: Oral examination

Term Status code Evaluation Weighting Examination aids Date Time Examination system
Spring ORD Oral examination 100/100
• * The location (room) for a written examination is published 3 days before examination date. If more than one room is listed, you will find your room at Studentweb.
Examination

For more information regarding registration for examination and examination procedures, see "Innsida - Exams"

More on examinations at NTNU