course-details-portlet

TFY4255 - Materials Physics

About

Examination arrangement

Examination arrangement: Portfolio assessment
Grade: Letters

Evaluation form Weighting Duration Examination aids Grade deviation
work 25/100 ALLE
Written examination 75/100 4 hours C

Course content

i) Structure: Structure representation in solid state physics with main focus on crystallography: Elementary introduction. Point and space groups. International Tables for Crystallography. Elementary introduction group theory related to crystallography
ii) Diffraction: Kinematic theory for electron, neutron and x-ray diffraction. Deviations from ideal kinematic diffraction, for example because of size or shape. Analysis of ordered materials in polycrystalline and monocrystalline form. Determination of crystal structures. Partially ordered materials. Structure determination, materials without long-range order Nano- and microstructures.
iii) Spectroscopy: emission and absorption spectroscopy techniques based on matter - X-ray and electron beam interactions for electron band structure analysis.
iv) Imaging: Electron microscopy (SEM, TEM) and X-ray microscopy. 3D imaging


Learning outcome

Knowledge - the candidate should gain knowledge of
- Symmetry in crystallography as used in point groups and space groups
- Fourier techniques and the convolution theorem for describing and analysis of (partially) crystalline materials.
- Diffraction-based structural analysis of materials using electron, X-ray and neutron radiation and the complementary of these different probes.
- Principles of spectroscopy techniques in X-ray and electron beam set-ups.
- Principles behind imaging in electron microscopy (SEM/TEM) and X-ray imaging.

Skills: the candidate should be able to
- Use of the International Tables for Crystallography and link basic group theory to crystallography.
- Do kinematical diffraction calculations of spatial and temporal correlations from materials of varying degree of order.
- Explain deviations between kinematical calculated and observed intensities.
- Analyze variations in diffraction intensity for deducing structural material characteristics in real space.
- Make the connection between diffraction and imaging.

General competence - the candidate should be able to:
- See the role of advanced characterization techniques (Diffraction, spectroscopy and imaging) in solid state physics, nanotechnology and materials science.
- Perform hands on experiments, including data analysis and report writing, of scattering experiments on materials.
- Judge the feasibility of using the covered experimental techniques to address structure-related problems in a wide range of organic and inorganic material classes.

Learning methods and activities

Lectures, calculation exercises, and laboratory exercises.
The course will be given in English if students on an international master program in physics are attending the course. Lecture material is in English. Expected work load in the course is 225 hours.

Further on evaluation

The final grade is based on portfolio assessment. The portfolio includes written exam (75%) and works/laboratory exercises (25%). The evaluation of the different parts is given in %-points, while the entire portfolio is given a letter grade. For a re-take of an examination, all assessments in the portfolio must be re-taken.

The re-sit examination (in August) may be changed from written to oral.

The exam is in English.

Course materials

Will be specified at the beginning of the course.

Credit reductions

Course code Reduction From To
SIF4067 7.5
FY8905 7.5 01.09.2010
More on the course
Facts

Version: 1
Credits:  7.5 SP
Study level: Second degree level

Coursework

Term no.: 1
Teaching semester:  AUTUMN 2020

No.of lecture hours: 3
Lab hours: 4
No.of specialization hours: 5

Language of instruction: English

Location: Trondheim

Subject area(s)
  • Materials Science and Solid State Physics
  • Physics
  • Nanotechnology
  • Technological subjects
Contact information
Course coordinator: Lecturer(s):

Department with academic responsibility
Department of Physics

Phone:

Examination

Examination arrangement: Portfolio assessment

Term Status code Evaluation form Weighting Examination aids Date Time Digital exam Room *
Autumn ORD work 25/100 ALLE
Room Building Number of candidates
Autumn ORD Written examination 75/100 C 2020-12-19 09:00 INSPERA
Room Building Number of candidates
  • * The location (room) for a written examination is published 3 days before examination date. If more than one room is listed, you will find your room at Studentweb.
Examination

For more information regarding registration for examination and examination procedures, see "Innsida - Exams"

More on examinations at NTNU