TMR4335 - Marine Technology - Propulsion Systems, Safety and Environment


Examination arrangement

Examination arrangement: Aggregate score
Grade: Letter grades

Evaluation Weighting Duration Grade deviation Examination aids
Laboratory assignments 30/100
School exam 70/100 4 hours D

Course content

Introduction to basic design and application of power systems for ships and offshore installations. Power consumption properties and operating profiles as basis for design and performance analysis of machinery systems. Characteristic properties, design and typical limitations of prime movers as diesel-, gas engines and gas turbines. Main factors affecting power, efficiency and exhaust emissions. Conventional and alternative marine fuels and principles of energy conversion by combustion. Air pollution and existing regulations. Understanding, application, and analysis of electric power systems and electric machines in propulsion and power generation systems onboard ships and general marine systems. Basic introduction to electric generators, converters, electric motors and propulsion drives, including control. Understanding and knowledge of risk, safety, reliability, and maintenance for design and operation of technical systems. Qualitative and quantitative methods for calculating and assessing risk, system reliability, availability, maintenance strategies, and life cycle cost analysis. Introduction to concepts, theory, methods and models.

Learning outcome

The courses in Marine Technology, namely the Marine basics, Structures, Hydrodynamics and Propulsion systems, safety and environment shall together enable the students to describe and understand the different aspects of marine technology and be able to carry out necessary engineering tasks related to design, construction and operation of marine systems. In addition, they shall give the student an overview of tools and methods for carrying out such work and certain training within communication skills building and teamwork. Marine Technology - Propulsion systems, safety and environment shall provide the understanding of modes of operation and performance with emphasis on design and operation of main machinery, electric power generation, distribution and electric propulsion, as well as the safety and reliability analysis of machinery systems. Upon completing the course the student should be able to: Hybrid and Electric Propulsion Systems: At the end of this section, the students are expected to: - Have the basic knowledge for the analysis and operation of shipboard electric power and propulsion systems and marine installations. - Understand basic electrical engineering for marine installations; analyze electric circuit networks including DC and AC circuits. - Define power flow in DC systems, and single- and three-phase AC power systems, generalize the power flow analysis to typical marine electrical power systems; calculate generated/consumed power by electrical machines; and describe the concept of power flow in marine electric distribution systems. - Explain the principle of electric machines including transformers and rotating machines, describe different topologies of electric machines applicable to marine propulsion, distribution and marine power generation, and model the electric components by equivalent electric circuits. - Understand and explain the principles of electric motors, motor drives and control of electric propulsion. - Understand the principle of hybrid power systems with batteries and fuel cells, and how it can contribute to reduced fuel and emissions. Conventional machinery: At the end of this section, the students are expected to be able to: - Quantify the power requirement of a certain vessel at various phases of operation and establish operating profiles. Estimate fuel consumption and exhaust emissions based on a specified operating profile, and also evaluate how changes in the operating profile may influence fuel consumption and exhaust emissions. - Understand basic principles of combustion and such definitions as heating value, excess air ratio, lean and fuel-rich combustion. Perform simple computations of the combustion process based on energy and mass balance. - Describe and analyze working cycles of internal combustion engines and gas turbines by means of p-V diagrams. Calculate simple thermodynamic cycles in order to evaluate energy utilization and produced work. - Explain the main components of the machines, the principles of energy conversion and typical operating characteristics of diesel engines and gas turbines. Explain terms used for describing performance of diesel engines and gas turbines related to power, energy utilization and exhaust emissions. - RAMS: At the end of this section, the students are expected to: - Understand basic concepts related to risk and safety, and be able to use selected methods of risk analysis. - Understand and be able to quantify component reliability. - Understand and calculate system reliability with reliability block diagrams and structure functions. - Understand and utilize fault tree analysis to characterize reliability and risk of technical systems. - Understand the meaning of system availability and how it can be calculated for complex and redundant systems. - Understand the principles for maintenance management and know different types of maintenance, degradation patterns, as well as the importance of maintainability. - Be able to calculate how system reliability can be improved through preventive maintenance. - Understand the basics of system optimization with respect to RAMS requirements. - Be able to use economic criteria, such as net present value, internal rate of return, and payback period, to assess design concepts and maintenance strategies.

Learning methods and activities

Lectures, project assignment, laboratory exercises and conventional assignments. The project assignment and laboratory exercises carried out in groups are mandatory. Some/a share of the conventional assignments may be mandatory for access to the exam. The course may include a mandatory seminar series that requires at least 50% participation.

Compulsory assignments

  • Compulsary assignments

Further on evaluation

The course grading is based on aggregated assessments, including a written exam and laboratory assignments. The results for the two parts are assigned letter grades (A-F). In order to attend the exam, compulsory exercises must also be passed.

If there is a re-sit examination, the examination form may change from the written exam to the oral exam. For a retake of an examination, all assessments during the course must be re-taken.

Course materials

To be announced at the start of the semester (Chapters from the textbook, lecture notes/compendium).

Credit reductions

Course code Reduction From To
TMR4310 5.0 AUTUMN 2018
More on the course



Version: 1
Credits:  7.5 SP
Study level: Third-year courses, level III


Term no.: 1
Teaching semester:  AUTUMN 2023

Language of instruction: -

Location: Trondheim

Subject area(s)
  • Marine Technology
Contact information
Course coordinator: Lecturer(s):

Department with academic responsibility
Department of Marine Technology


Examination arrangement: Aggregate score

Term Status code Evaluation Weighting Examination aids Date Time Examination system Room *
Autumn ORD School exam 70/100 D 2023-12-01 09:00 PAPIR
Room Building Number of candidates
Storhall del 2 Idrettssenteret (Dragvoll) 56
SL274 Sluppenvegen 14 1
DI42 Idrettssenteret (Dragvoll) 5
Autumn ORD Laboratory assignments 30/100
Room Building Number of candidates
Summer UTS School exam 70/100 D PAPIR
Room Building Number of candidates
  • * The location (room) for a written examination is published 3 days before examination date. If more than one room is listed, you will find your room at Studentweb.

For more information regarding registration for examination and examination procedures, see "Innsida - Exams"

More on examinations at NTNU