course-details-portlet

TMT4145 - Ceramic Engineering

About

Examination arrangement

Examination arrangement: Aggregate score
Grade: Letter grades

Evaluation Weighting Duration Grade deviation Examination aids
Project work 25/100
School exam 75/100 4 hours D

Course content

This course provides an overview of the properties, manufacturing and design of ceramics, nanostructured ceramics, films and coatings. Three main topics are covered: Properties, manufacturing processes (bottom-up and top-down approaches) with emphasis on achieving the desired properties as well as the basis for design. Properties: Bulk: elasticity, hardness, strength, fracture toughness and creep in relation to composition and micro- and nano-structure (grain size, secondary phases, porosity) and thermal properties. Films/coatings: mechanical performance. Manufacturing: Synthetic ceramic powders, the stabilization of dispersions, forming by pressing, casting, extrusion and injection molding, sintering and heat treatment, deposition of films and coatings, sustainability aspects of ceramics processing techniques. Design: Principles of design with brittle materials, Weibull statistics, analysis of fracture and toughening of ceramics. Finite size effects in ceramic materials.

Learning outcome

After completing the course the student will be able to: - Explain the definition of physical properties of ceramic materials (density, heat capacity, thermal conductivity, thermal expansion) and describe which parameters these properties are dependent on. - Explain concepts related to mechanical properties of ceramic materials (elasticity, Young's modulus, theoretical strength, tensile strength, compressive strength, bending strength and fracture toughness) and understand the relationship between fracture strength and defects in the material. - Explain how the mechanical properties of ceramics are measured, make calculations about this and explain how the properties of ceramic materials differ from other types of materials (eg metals). - Describe the mechanisms of plasticity in ceramic materials. - Make simple failure analysis of ceramic materials. - Understand how ceramic materials behave when used at elevated temperatures (creep and thermal shock resistance), understand how they react with ambient gases and liquids and calculate the typical parameters from the creep data. - Explain the principles that must be used for designing with ceramic materials, how they differ from other materials and perform calculations of Weibull statistics. - Explain the toughening mechanisms available and explain how these can be used to increase the fracture toughness of ceramic materials. - Describe the process of how ceramic materials are produced from powder synthesis to the firing of the green bodies to achieve a dense material. - Describe processes for the preparation of ceramic films and coatings - Understand the importance of how the preparation process affects the properties of the finished product. - Evaluate sustainability aspects in ceramics production. - Describe typical properties of different ceramic materials and compare these with other types of materials. - Describe how glasses and glass ceramics are prepared. - Understand how finite size effect influences the properties of ceramics

Learning methods and activities

The teaching is based on lectures, exercises and a project work. Both the exercises and the project work are mandatory and have to be passed to be allowed to take the exam. Since the teaching is given in English the Examination will be given in English only. Students are free to choose Norwegian or English for written assessments. Expected time spent on this course: Lectures: 60 timer, Project work: 55 timer. Exercises: 26 timer. Self studies: 70 timer"

Compulsory assignments

  • Exercises

Further on evaluation

The final grade in the course is based on the written exam and the project work is given in a letter grade. The plus 50% of the exercises have to be approved to allow the student to take the final exam. If there is a re-sit examination, the examination form may change from written to oral. The student does not need to redo an approved exercise set.

improving the grade for the project work needs to be done in a semester with lectures.

Course materials

D. W. Richerson and William E. Lee: Modern Ceramic Engineering. Properties, Processing and Use in Design, CRC Press Taylor and Francis Group, Fourth Edition, 2018.

Digital compendium.

Credit reductions

Course code Reduction From To
SIK3052 7.5
More on the course

No

Facts

Version: 1
Credits:  7.5 SP
Study level: Second degree level

Coursework

Term no.: 1
Teaching semester:  AUTUMN 2023

Language of instruction: English

Location: Trondheim

Subject area(s)
  • Materials Science and Engineering
  • Technological subjects
Contact information
Course coordinator: Lecturer(s):

Department with academic responsibility
Department of Materials Science and Engineering

Examination

Examination arrangement: Aggregate score

Term Status code Evaluation Weighting Examination aids Date Time Examination system Room *
Autumn ORD School exam 75/100 D 2023-12-13 15:00 INSPERA
Room Building Number of candidates
SL110 lilla sone Sluppenvegen 14 45
SL520 Sluppenvegen 14 3
Autumn ORD Project work 25/100

Submission
2023-11-25


23:59

INSPERA
Room Building Number of candidates
Summer UTS School exam 75/100 D INSPERA
Room Building Number of candidates
  • * The location (room) for a written examination is published 3 days before examination date. If more than one room is listed, you will find your room at Studentweb.
Examination

For more information regarding registration for examination and examination procedures, see "Innsida - Exams"

More on examinations at NTNU