Course - Digitalized Solutions to Prognosis, Predictive Maintenance and Safety Analysis - TPK4450
TPK4450 - Digitalized Solutions to Prognosis, Predictive Maintenance and Safety Analysis
About
Examination arrangement
Examination arrangement: School exam
Grade: Letter grades
Evaluation | Weighting | Duration | Grade deviation | Examination aids |
---|---|---|---|---|
School exam | 100/100 | 4 hours | B |
Course content
Technical systems embed more and more sensors and calculators making it possible to monitor their health. We are moving from reactive maintenance strategies to condition-based and predictive ones. A joint use of relevant methodologies is needed related to condition monitoring, data driven prognostics and maintenance optimization.
On the other hand, safety-critical systems are installed in many applications to protect valuable assets from accidents and damages. It is important to keep these systems available, and thus reliability assessment, monitoring and health management are necessary works in controlling and reducing risks.
This course is organized around the four following main blocks of competence. 1) Diagnosis: concepts, methods and tools to detect that a system is experiencing a deviation from the nominal state and to isolate the root cause of the deviation/degradation. Statistical methods and data driven ones (Machine Learning) will be presented. 2) Prognosis: concepts, methods and tools to built a prediction model of the system degradation with historical data. Model based methods and data driven ones (Machine Learning) will be presented. 3) Decision optimization: concepts, methods and tools to define and to optimize preventive decisions (avoid failure/production loss/accident with minimal intervention costs). 4) Reliability analysis and standardization of safety-critical systems. Analytical formalism and Monte Carlo simulation will be used.
Learning outcome
Knowledge:
What is the consistency principle and overview of different approaches for diagnosis (statistical, data-based and machine learning), what is the concept of remaining useful lifetime, overview of models for degradation and/or prediction (trends models, physic based models, time series models, stochastic processes and data driven approaches based on machine learning concepts), understanding of the concept of preventive decision rule, condition-based ones and predictive ones, overview of relevant assessment tools including analytical formalism and Monte Carlo simulation. Some inputs regarding optimization techniques will be given (optimization with constraints, multi-objective optimization, robust optimization).
Skills:
in a given situation, be able to make a status, to identify what are the lacks and/or how to manage with the given inputs in terms of diagnosis, prognosis and maintenance optimization. Be able to have a global vision of the whole modeling frameworks and technical issues from data processing to decision making in operation.
General competence (attitudes):
Be part of or lead a team for system/infrastructure/assets health management or maintenance management with a good background in quantitative analyses. This course is relevant for future manager, for future engineers in research, development and for future researchers in the academia.
Learning methods and activities
The students will have to implement concepts and methods on use cases and will develop Matlab or Scilab codes (or any equivalent language) or use Matlab toolboxes for this purpose. Several use cases will exemplify the three main blocks of the course. Lectures, project work and exercises. The lectures, exercises and exam are in English. Students are free to choose Norwegian or English for written assessments.
Compulsory assignments
- Compulsory activities
Further on evaluation
Assessment is the basis for the grade in the course. A written exam counts 100%. Mandatory work from previous semester can be accepted by the Department by re-take of an examination if there haven't been any significant changes later.
By a re-take of an examination all assessments during the course, that counts in the final grade, have to be re-taken. If there is a re-sit examination, the examination form may be changed from written to oral.
Recommended previous knowledge
Basic course in statistics and probability theory. TPK4120 - Safety and Reliability Analysis. Some skills in using scripting languages and toolboxes (e.g. Matlab, Python).
Required previous knowledge
TPK4120 Safety and Reliability Analysis.
Course materials
One dedicated compendium and selected chapters in several books.
No
Version: 1
Credits:
7.5 SP
Study level: Second degree level
Term no.: 1
Teaching semester: AUTUMN 2024
Language of instruction: English
Location: Trondheim
- Safety and Reliability
- Production and Quality Engineering
- Technological subjects
Department with academic responsibility
Department of Mechanical and Industrial Engineering
Examination
Examination arrangement: School exam
- Term Status code Evaluation Weighting Examination aids Date Time Examination system Room *
- Autumn ORD School exam 100/100 B 2024-12-11 15:00 INSPERA
-
Room Building Number of candidates SL430 Sluppenvegen 14 16 - Summer UTS School exam 100/100 B INSPERA
-
Room Building Number of candidates
- * The location (room) for a written examination is published 3 days before examination date. If more than one room is listed, you will find your room at Studentweb.
For more information regarding registration for examination and examination procedures, see "Innsida - Exams"