course-details-portlet

TTK4130

Modelling and Simulation

Choose study year
Credits 7.5
Level Third-year courses, level III
Course start Spring 2025
Duration 1 semester
Language of instruction English
Location Trondheim
Examination arrangement School exam

About

About the course

Course content

The course gives an introduction to methods for modeling and simulation of physical processes, for use in control applications. 1. Models, model properties and modeling tools: The student will know the most common model classes, and have knowledge of some central model properties that are useful for control systems. 2. Numerical simulation: The student should be able to simulate a state-space model in a computer. This entails implementation of explicit and implicit ODE/DAE methods, and to know principles of state-of-the-art ODE solvers (e.g. as implemented in Matlab). The students will be exposed to the challenges and pitfalls that can be encountered in numerical simulations. 3. Rigid body dynamics: The student should be able to write down equations of motion for simple systems of rigid bodies, which gives a basis for modeling of mechanical systems such as robots, marine vessels, cars, and airplanes. The students will know the Lagrange method, which allows to model complex multi-body systems easily. 4. -Modelling of mechanical, electrical, hydraulic systems, as well as composite (multi-domain) systems.

Learning outcome

Knowledge: At the end of the course, the student should know: 1 Models, model properties and some modeling tools: - Know the most important model classes. - Understand how to manipulate models / model approximations to change their class. 2 Numerical simulation: - Derive and be able to use explicit and implicit methods (Runge-Kutta). - Analyze the stability of one-step methods, and know the difference between different classes, and the consequences this has for choice of method. 3 Rigid body dynamics: - Know coordinate-based and coordinate free (dyadics) descriptions of rigid body kinematics. - Know the most important parameterizations of rotations. - Be able to differentiate vectors, and understand the concept of angular velocity. - Know the principles for use of Lagrange equations of motion. - Use constrained Lagrange for multi-body dynamics. 4 System modelling: Be able to use the bond graph method for modelling mechanical, electrical, hydraulic and composite systems. Skills: At the end of the course, the student should be able to: 1 Recognize models of different forms and their properties 2 Implement explicit and implicit Runge-Kutta methods. 3 Write down equations of motion for simple and multi-body systems of rigid bodies. The student should be able to communicate technological issues to both experts and others.

Learning methods and activities

Lectures and compulsory assignments including computer exercises. Approved assignments are required. The lectures will be in English.

Compulsory assignments

  • Exercises

Further on evaluation

If there is a re-sit examination, the examination form may be changed from digital to oral.

Course materials

To be announced in class (via Blackboard).

Credit reductions

Course code Reduction From
SIE3025 7.5 sp
This course has academic overlap with the course in the table above. If you take overlapping courses, you will receive a credit reduction in the course where you have the lowest grade. If the grades are the same, the reduction will be applied to the course completed most recently.

Subject areas

  • Technological subjects

Contact information

Course coordinator

Department with academic responsibility

Department of Engineering Cybernetics

Examination

Examination

Examination arrangement: School exam
Grade: Letter grades

Ordinary examination - Spring 2025

School exam
Weighting 100/100 Examination aids Code A Date 2025-05-13 Time 09:00 Duration 4 hours Exam system Inspera Assessment
Place and room for school exam

The specified room can be changed and the final location will be ready no later than 3 days before the exam. You can find your room location on Studentweb.

Sluppenvegen 14
Room SL310 lilla sone
80 candidates
Room SL310 hvit sone
46 candidates
Room SL310 blå sone
48 candidates
Room SL310 turkis sone
59 candidates

Re-sit examination - Summer 2025

School exam
Weighting 100/100 Examination aids Code A Duration 4 hours Exam system Inspera Assessment
Place and room
The specified room can be changed and the final location will be ready no later than 3 days before the exam. You can find your room location on Studentweb.