course-details-portlet

TTK4255

Robotsyn

Vurdering og obligatoriske aktiviteter kan bli endret frem til 20. september.

Studiepoeng 7,5
Nivå Høyere grads nivå
Undervisningsstart Vår 2026
Varighet 1 semester
Undervisningsspråk Engelsk
Sted Trondheim
Vurderingsordning Skriftlig skoleeksamen

Om

Om emnet

Faglig innhold

Elements of Visual Perception, Image Sampling and Quantization, related Mathematical tools applied to Image Processing and Analysis (array, matrix, linear and non-linear operations, arithmetic and geometric operations, morphology, spatial and temporal operations, frequency analysis, linear algebra, probabilistic methods, image transformations and geometric operations) Image Formation: Camera Models, Calibration, Single view geometry, Multiple view geometry, Epipolar geometry, Feature extraction, Bundle adjustment Position and Orientation: Feature based alignment; Pose estimation; Time varying pose and trajectories, Structure from motion, dense Motion Estimation, Visual Odometry (Semi-direct VO, direct sparse odometry) Localization and Mapping: Initialization, Tracking, Mapping, geometric SLAM formulations (indirect vs. direct error formulation, geometry parameterization, sparse vs. dense model, optimization approach), Relocalization and map Optimization, Examples: Indirect (Feature based) methods (MonoSLAM, PTAM, ORB-SLAM), Direct methods (DTAM, LSD-SLAM), Sensor combinations (IMU, mono vs. Stereo, RGB-Depth), Analysis and parameter studies Recognition and Interpretation: Object detection, Instance recognition, Category recognition, Context and Scene understanding

Læringsutbytte

Knowledge: Knowledge about core applications in Robotic Vision. Knowledge about fundamental (physical) concepts about visual perception. Knowledge about image formation, image representation and camera models. Knowledge about image sampling, quantization and processing. Knowledge about structure from motion concepts for pose, tracking, motion estimation as well as visual odometry (VO) simultaneous localization an mapping (SLAM) strategies exploring popular methods. Basic knowledge about feature extraction, object recognition, context awareness/semantics and scene understanding. Skills: Be able to choose imaging systems with respect to specific applications. Calibrate the imaging system. Modify different imaging setups with respect to environmental conditions. Manipulate and implement pose, tracking and motion estimation techniques. Implement, tune and evaluate SLAM alorithms. Implement object recognition and classification methods. At the end of the semester a successful student should have skills in processing and analysis of digital images and be able to design simple robot vision and machine vision systems. General competence: Be able to apply the fundamental imaging principles. Consciousness about the role of visual sensing in robotic applications. Be able to analyze strength and weaknesses of different vision based approaches.

Læringsformer og aktiviteter

The course is given as a mixture of lectures, and assignments. 75% of the assignments must be approved to enter the final exam.

Obligatoriske aktiviteter

  • Øvingsoppgaver

Mer om vurdering

The evaluation will consist of a written exam (100/100). It is obligatory to pass at least 75% of the assignments to be eligible to take the exam. If there is a re-sit examination, the examination form may change from written to oral.

Forkunnskapskrav

Minst ett av følgende emner er (eller tilsvarende fra andre universiteter): TTK4115 Lineær systemteori,

TTT4275 Estimering, deteksjon og klassifisering,

TMA4268 Statistisk læring

TMA4267 Lineære statistiske modeller eller

TMA4245/TMA4240 - Statistikk

Kursmateriell

Information on this is given at the start of the semester.

Fagområder

  • Datateknikk og informasjonsvitenskap
  • Marin kybernetikk
  • IKT og matematikk
  • Informatikk
  • Anvendt og industriell matematikk
  • Grafikk/bildebehandling
  • Medisinsk informatikk/datateknikk
  • Signalbehandling
  • Multivariat bildeanalyse
  • Numerisk matematikk
  • Havbruk
  • Prosessautomatisering
  • Mekanikk - fluidmekanikk
  • Fotogrammetri
  • Teknisk kybernetikk
  • Optikk
  • Bildediagnostikk
  • Informasjonsteknologi og informatikk
  • Matematikk
  • Statistikk

Kontaktinformasjon

Emneansvarlig/koordinator

Ansvarlig enhet

Department of Engineering Cybernetics

Eksamen

Eksamen

Vurderingsordning: Skriftlig skoleeksamen
Karakter: Bokstavkarakterer

Ordinær eksamen - Vår 2026

Skriftlig skoleeksamen
Vekting 100/100 Hjelpemiddel Kode D Varighet 4 timer Eksamenssystem Inspera Assessment Sted og rom Ikke spesifisert ennå.

Utsatt eksamen - Sommer 2026

Skriftlig skoleeksamen
Vekting 100/100 Hjelpemiddel Kode D Varighet 4 timer Eksamenssystem Inspera Assessment Sted og rom Ikke spesifisert ennå.