course-details-portlet

TMR4217 - Hydrodynamics for High-Speed Marine Vehicles

About

Examination arrangement

Examination arrangement: School exam
Grade: Letter grades

Evaluation Weighting Duration Grade deviation Examination aids
School exam 100/100 4 hours D

Course content

The course considers the three main categories of high-speed vessels, i.e. hull-supported, air-cushion supported and foil supported vessels. Hull-supported vessels are divided into semi-displacement and planing vessels. All hydrodynamic aspects are discussed. This means resistance, trim, wash, propulsion, seakeeping, hydrodynamic stability and maneuvering. Links to automatic control and structural mechanics are emphasized. It is important to stress that methods/topics treated by the course can be applied to/are relevant for displacement vessels, as a special case of hull-supported vessels operating in the low Froude-number range. The driving questions are: What are the resistance components of different high-speed vessels? What are their seakeeping and maneuvering properties? What are the main instability mechanisms/phenomena as a function of speed? Which prediction methods are suitable to predict their equilibrium conditions, their calm-water performances, their operations at sea? The main steps of the course are the following. First, a general overview of the course is given. Then, the different high-speed vessel categories are examined in detail. The surface effect ships (SES), dealing with: static equilibrium, metacentric height, resistance components, air bag, bow seal, speed loss in waves, cobblestone oscillations. The hydrofoil vessels, dealing with: static equilibrium, lift and drag coefficients, cavitation, from hullborne to foilborne conditions, resistance, manoeuvring, automatic control, linear foil theory, Weissinger approximation, three-dimensional foil theory, free surface effects, foil interaction, wave induced motions of hydrofoil vessels. The semi-displacement vessels, dealing with: resistance components, wave resistance and wash, wave induced motions, added resistance, dynamic stability, global wave loads, manoeuvring. The planing vessels, dealing with: steady equilibrium, dynamic instability. porpoising. manoeuvring.

Learning outcome

General objectives of the course are: • To build up knowledge about different types of high-speed vehicles, their typical applications, and their hydrodynamic features. • To provide enough physical insight to interpret theoretical and experimental investigations of hydrodynamic properties applied in design of high-speed marine vehicles. • To unable performing simple analyses and calculations of hydrodynamic properties of high-speed marine vehicles. • To master the concepts and terminology of high-speed marine vehicles. Among the learning outcomes for the students, with respect to knowledge and skills, one can list: • To understand the key differences between alternative high-speed vessel concepts, their design and operation advantages and challenges; this is essential in order to select a specific concept for targeted missions. • To learn the relative importance of physical mechanisms in the resistance experienced by a high-speed vessel in calm water and to be able to estimate it by choosing the suitable prediction methods. To be able to estimate added-resistance contributions due to e.g. interaction with incident waves, maneuvering. • To be able to identify the appropriate propulsion system for a specific high-speed vehicle and to estimate, for propellers and water jets, the provided thrust and the efficiency, as well as to be able to control their operative challenges. • To be able to estimate relevant wave-induced response variables (motions, relative motions, accelerations, etc.) within linear theory and assess operational limit criteria for a specific high-speed vessel. This includes also the estimation of occurrence and features of rigid-motion resonance and flexible-mode resonance (springing/whipping). • To be able to roughly assess occurrence of violent wave-body interaction phenomena, such as water on deck and slamming and to know the physical phenomena and factors connected with slamming, its relevance and consequences. To learn the general features of the major methods used to predict slamming loads on vessels and their local and global consequences. • To be able to estimate the hydrodynamic loads during ship maneuvering as well as the loads and performance of the steering devices, including maneuvering in waves, presence of other ships or structures. • To be able to assess static and dynamic stability of high-speed vehicles and to identify relevant design and operational parameters governing their stability properties. • To be able to examine the use of automatic control and its consequences for the vessel behavior. • To be aware of scaling issues when performing model tests to estimate relevant local/global variables for different high-speed vessels.

Learning methods and activities

Lectures: There are a three-hour theoretical and a one-hour exercise lectures per week. The students are advised to follow all lectures; this will help them in the learning process and will encourage a good learning environment with the other students. At the exercise lectures they will receive hints for the specific exercise and help to improve their solution-strategy skills. A teacher assistant will help the students with the exercises and will administrate the exercise lectures and activities. Assignments: During the course, exercise lectures will alternate with the theoretical lectures. Each week, exercises will be assigned to the students with topics which are within the scope of the course and related with the course learning program. The deadline is two weeks after each assignment. In total, twelve exercise home-works will be assigned concerning problems relevant for the course content and scope. The exercises must be submitted in time in order to be considered for the exam requirements. Exceptions can be done if delays are suitably justified. Learning assessment: At the beginning of the course, a list of sample questions closely connected with the theoretical lectures, are provided to the students. The students are advised to check their capability in answering the questions in the meanwhile that they follow the course and to notify if they encounter any difficulty. They are also advised to work in groups to examine the questions from different perspectives and open their minds using the different students’ backgrounds as enrichment for their learning activities. Communications: All information of the course is provided through the Online Learning Platform of the course. This includes the exams from previous years, the topics of the course split in theoretical and exercise lectures, notes and slides from the theoretical lectures, the sample questions, the assigned exercises. The students can also upload their home-works on the same platform and are informed of specific changes/matters through bulletins.

Compulsory assignments

  • Exercises

Further on evaluation

Eight of the twelve assigned exercises must be accepted for admission to the final exam. Examination material will be given in English only.

The final grade is based on a final exam counting for 100% of the grade.

Postponed/repeated exams may be oral. For a re-take of an examination, all assessments during the course must be re-taken.

Required previous knowledge

Familiarity with mathematical symbols and to have basic knowledge of fluid mechanics, water waves, and hydrodynamics.

Course materials

Faltinsen, O.M., 2005, Hydrodynamics of High-Speed Marine Vehicles, Cambridge University Press.

More on the course
Facts

Version: 1
Credits:  7.5 SP
Study level: Second degree level

Coursework

Term no.: 1
Teaching semester:  SPRING 2024

Language of instruction: English

Location: Trondheim

Subject area(s)
  • Marine Hydrodynamics
Contact information
Course coordinator: Lecturer(s):

Department with academic responsibility
Department of Marine Technology

Examination

Examination arrangement: School exam

Term Status code Evaluation Weighting Examination aids Date Time Examination system Room *
Spring ORD School exam 100/100 D 2024-05-21 15:00 INSPERA
Room Building Number of candidates
SL311 grønn sone Sluppenvegen 14 7
Summer UTS School exam 100/100 D INSPERA
Room Building Number of candidates
  • * The location (room) for a written examination is published 3 days before examination date. If more than one room is listed, you will find your room at Studentweb.
Examination

For more information regarding registration for examination and examination procedures, see "Innsida - Exams"

More on examinations at NTNU