Course - Sustainability Analytics - IE501988
IE501988 - Sustainability Analytics
About
New from the academic year 2023/2024
Examination arrangement
Examination arrangement: Portfolio
Grade: Letter grades
Evaluation | Weighting | Duration | Grade deviation | Examination aids |
---|---|---|---|---|
Portfolio | 100/100 |
Course content
This course introduces Sustainability Analytics (SA), a new interdisciplinary research field, which aims to offer data-driven decision support for sustainable development of operations in private and public sectors. The digital transformation with its changes through combination of information, computing, communication and connectivity technologies, offers new possibilities for developing data-driven machine learning solutions to support the creation of decision support systems and guide the industry in a more sustainable direction.
This course is interdisciplinar, combining courses on artificial intelligence (e.g., machine learning), data science, sustainability science, and decision science.
Learning outcome
Knowledge:
- Be able to explain in detail central concepts, technologies and algorithms proposed for sustainability analytics.
- Be familiar with important applications of sustainability analytics.
Skills:
Learning outcomes:
After successful completion of this course students are expected to be able to:
- understand specific challenges and proposed solutions related to the management of large volumes of data in sustainability analytics applications;
-clearly explain problems, algorithms, and their formulas;
-understand well how can be used in ;
-qualitatively and quantitatively compare the characteristics, (dis)advantages, formulas, and performance of a number of key algorithms;
-design and implement effective solutions based on chosen algorithms, to solve practical problems.
Learning methods and activities
Interactive lectures, self-study, pen-and-paper exercises, computer exercises, and project work.
Further on evaluation
The portfolio consists of a predefined number (3-10) of theoretical and project assignments. The portfolio contains assignments that are carried out, digitally documented and submitted during the term. Both individual and team assignments may be given. Assignments are designed to help students achieve specific course learning outcomes, and formative feedback is given during the period of the portfolio. The assessment is an overall evaluation of the portfolio.
Specific conditions
Admission to a programme of study is required:
Master in engineering in Simulation and Visualization (880MVS)
Course materials
Course literature will be announced at the start of the course.
No
Version: 1
Credits:
7.5 SP
Study level: Second degree level
Term no.: 1
Teaching semester: SPRING 2024
Language of instruction: English
Location: Ålesund
- ICT and Mathematics
- Engineering Subjects
Department with academic responsibility
Department of ICT and Natural Sciences
Examination
Examination arrangement: Portfolio
- Term Status code Evaluation Weighting Examination aids Date Time Examination system Room *
- Spring ORD Portfolio 100/100 INSPERA
-
Room Building Number of candidates
- * The location (room) for a written examination is published 3 days before examination date. If more than one room is listed, you will find your room at Studentweb.
For more information regarding registration for examination and examination procedures, see "Innsida - Exams"