course-details-portlet

IMAA2024

Mathematics for engineering 2 D

Assessments and mandatory activities may be changed until September 20th.

Credits 7.5
Level Intermediate course, level II
Course start Spring 2026
Duration 1 semester
Language of instruction Norwegian
Location Ålesund
Examination arrangement School exam

About

About the course

Course content

Basis module. Functions of several variables. Partial differentiation, gradient. Critical points and optimization. Taylor’s theorem with remainder. Introduction to partial differential equations: examples and solutions.

Partial differential equations. Different types required different approaches, focus on physical/modeling intuition. Overview of the field. Steady state equations. Examples: Laplace’s and Poisson’s equation. Solution by computer using linear algebra. Time-dependent systems. Examples: Heat equation, advection equation, wave equation. Solution by computer.

Programme module. Set theory. Set operations and terminology including intersection and union, Venn diagrams. Propositional logic. Propositions, connectives, disjunctive normal form. Predicate logic and quantifiers. Selected methods of proof. Inference rules and admissible rules. Basic number theory, modular arithmetic, and selected algorithms. Basic graph theory. Important graph types, including trees, and related algorithms such as breadth-first and depth-first search.

Learning outcome

Knowledge

The candidate has good knowledge of:

  • Functions of several variables, including partial derivatives and their application to classification of stationary points and optimization.
  • Taylor’s theorem and approximation by Taylor series.
  • Partial differential equations, their properties and applications.
  • Basic concepts and methods from propositional and predicate logic and set theory
  • Selected forms of mathematical proof
  • Basic number theory and modular arithmetic
  • Terminology and selected algorithms for graphs.
  • Digital tools for analysis of mathematical problems.

Abilities

The candidate can:

  • Find and interpret the partial derivatives of a function of several variables
  • Approximate functions by Taylor’s theorem and estimate the error with a remainder term.
  • Solve simple optimization problems with several variables.
  • Verify that a given function solves a partial differential equation
  • Solve certain partial differential equations by computer, verify and interpret the results.
  • Apply basic concepts, results and methods from logic and set theory, for example discern whether an argument is valid or not, or decide whether propositions are equivalent.
  • Construct simple mathematical proofs
  • Apply selected algorithms from basic number theory.
  • Apply basic concepts and results related to graphs and apply selected algorithms to small examples.
  • Apply digital tools to analyse mathematical problems.

General competence

The candidate:

  • Has good knowledge of, and can apply a symbolic and formulaic mathematical apparatus that is relevant for communication in engineering sciences
  • Has experience with applications of mathematical methods and digital tools to problems with their own and related specializations.
  • Can connect mathematical concepts and techniques to models the candidate meets within and outside of their studies.

Learning methods and activities

Lectures, exercises and a project.

Tasks require both analytical and numerical methods with the use of digital tools.

Compulsory assignments

  • Compulsory assignments (exercises and a project)

Further on evaluation

4 hours individual digital exam in Inspera with grading scale A-F.

The compulsory assignments must be passed in order to take the exam. Approved exercises from previous years are automatically approved by the department.

Allowable exam aids: Simple calculator (code D in the NTNU guidelines).

Python is available on the exam.

Resit exam in August. Resit exam may be given as an oral examination.

Specific conditions

Admission to a programme of study is required:
Computer Science - Engineering (BIDATA)
Logistics - Engineering (FTHINGLOG)

Course materials

Recommended course material will be announced at the start of the semester

Credit reductions

Course code Reduction From
IMAT2024 7.5 sp Autumn 2023
IMAG2024 7.5 sp Autumn 2023
IMAG2011 2 sp Autumn 2023
IMAA2011 2 sp Autumn 2023
IMAT2011 2 sp Autumn 2023
IMAG2021 5.5 sp Autumn 2023
IMAA2021 5.5 sp Autumn 2023
IMAT2021 5.5 sp Autumn 2023
IMAG2031 4 sp Autumn 2023
IMAA2031 4 sp Autumn 2023
IMAT2031 4 sp Autumn 2023
IMAA2100 2 sp Autumn 2024
IMAG2100 2 sp Autumn 2024
IMAT2100 2 sp Autumn 2024
IMAG2012 2.5 sp Autumn 2025
IMAT2012 2.5 sp Autumn 2025
IMAA2012 2.5 sp Autumn 2025
IMAG2022 5 sp Autumn 2025
IMAT2022 5 sp Autumn 2025
IMAA2022 5 sp Autumn 2025
IMAG2023 5 sp Autumn 2025
IMAT2023 5 sp Autumn 2025
IMAA2023 5 sp Autumn 2025
TMA4411 4 sp Autumn 2025
TMA4412 3.5 sp Autumn 2025
MA2106 4 sp Autumn 2025
This course has academic overlap with the courses in the table above. If you take overlapping courses, you will receive a credit reduction in the course where you have the lowest grade. If the grades are the same, the reduction will be applied to the course completed most recently.

Subject areas

  • Mathematics

Examination

Examination

Examination arrangement: School exam
Grade: Letter grades

Ordinary examination - Spring 2026

School exam
Weighting 100/100 Examination aids Code D Duration 4 hours Exam system Inspera Assessment Place and room Not specified yet.

Re-sit examination - Summer 2026

School exam
Weighting 100/100 Examination aids Code D Duration 4 hours Exam system Inspera Assessment Place and room Not specified yet.