Jens-Petter Andreassen
Jens-Petter Andreassen
Professor, Head of Department
Department of Chemical Engineering Faculty of Natural SciencesBackground and activities
I am Head of Department of chemical engineering. Our department brings chemistry from the lab to industrial scale. We study chemical reactions and how we can affect their rate in order to improve the process design. This involves the understanding of chemistry and materials on nano level, interfaces between solid, liquid and gas phases, and how this affects the exchange of heat and mass in a processing plant. With this knowledge we formulate mathematical models and simulate different processes in large scale, which we can validate by experimental studies in our laboratories and pilot plant equipment. We have made a strategic decision to invest our efforts in sustainable solutions for the future. This implies that we increase our research in how to apply biological raw materials and biochemistry to develop energy, new materials and chemicals.
When I am not HoD I am professor at the department, specializing in industrial crystallization. In the crystallization group, we study precipitation and growth of solid particulate materials related to industrial production, for instance pharmaceutical products or mineral precipitates. The size and shape of the crystals are important for separation and quality of the final product and we focus our studies on the fundamental size enlargement process. We cooperate with industrial companies, but also perform fundamental studies of mineralization in biological systems, as for instance how bone formation happens in the human body.
Courses
- TKP4901 - Chemical Process Technology, Master's Thesis
- TKP4905 - Nanotechnology, Master's Thesis
- TKP4535 - Environmental Engineering and Reactor Technology, Specialization Course
- TKP4580 - Chemical Engineering, Specialization Project
- HMS0001 - Health, Safety and Environment (HSE) course for 1rst year students
- TKP4900 - Chemical Process Technology, Master's Thesis
- TKP4581 - Chemical Engineering, Specialization Project
- TKP4570 - Nanotechnology, Specialization Project
Scientific, academic and artistic work
A selection of recent journal publications, artistic productions, books, including book and report excerpts. See all publications in the database
2021
- (2021) The Effect of Reaction Conditions and Presence of Magnesium on the Crystallization of Nickel Sulfate. Crystals. vol. 11 (12).
- (2021) Investigating the effects of process parameters on the filtration performance of ferric hydroxide in a continuous MSMPR reactor. Hydrometallurgy. vol. 202.
2020
- (2020) Tuning and tracking the growth of gold nanoparticles synthesized using binary surfactant mixtures. Nanoscale Advances. vol. 2(5).
- (2020) Tuning and tracking the growth of gold nanoparticles synthesized using binary surfactant mixtures. Nanoscale Advances. vol. 2 (5).
- (2020) Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: Towards enhancing sustainability and economics of struvite crystallization. Chemosphere. vol. 256.
- (2020) Struvite crystallization by using raw seawater: Improving economics and environmental footprint while maintaining phosphorus recovery and product quality. Water Research. vol. 173.
2019
- (2019) Engineering of struvite crystals by regulating supersaturation – Correlation with phosphorus recovery, crystal morphology and process efficiency. Journal of Environmental Chemical Engineering. vol. 7 (1).
- (2019) Enhancing efficiency and economy of phosphorus recovery process by customizing the product based on sidestream characteristics. Water Science and Technology. vol. 79 (9).
- (2019) Formation of Hydroxyapatite via Transformation of Amorphous Calcium Phosphate in the Presence of Alginate Additives. Crystal Growth & Design. vol. 19 (12).
- (2019) Precipitation of silver particles with controlled morphologies from aqueous solutions. CrysteEngComm. vol. 22.
2018
- (2018) Growing gold nanostructures for shape-selective cellular uptake. Nanoscale Research Letters. vol. 13:254.
2017
- (2017) Transformation of brushite to hydroxyapatite and effects of alginate additives. Journal of Crystal Growth. vol. 468.
2016
- (2016) Controlled mineralisation and recrystallisation of brushite within alginate hydrogels. Biomedical Materials. vol. 11 (1).
- (2016) A correlative spatiotemporal microscale study of calcium phosphate formation and transformation within an alginate hydrogel matrix. Acta Biomaterialia. vol. 44.
- (2016) Gelling kinetics and in situ mineralization of alginate hydrogels: A correlative spatiotemporal characterization toolbox. Acta Biomaterialia. vol. 44.
2015
- (2015) Impact of monoethylene glycol and Fe2+ on crystal growth of CaCO3. International Corrosion Conference Series. vol. 2015-January.
- (2015) Nucleation and Growth of Brushite in the Presence of Alginate. Crystal Growth & Design. vol. 15 (11).
2014
- (2014) Scaling of Calcium Carbonate on the Exterior of Heated Surfaces in a Flow-Through Setup. Chemical Engineering & Technology. vol. 37 (8).
- (2014) Synthesis of Au nanowires with controlled morphological and structural characteristics. Applied Surface Science. vol. 311.
- (2014) Spherulitic Growth of Gold Particles Precipitated from Aqueous Solution. Chemical Engineering & Technology. vol. 37 (8).