Heading HE

Department of Civil and Environmental Engineering

Hydraulic Engineering

Banner HE

Photo: Knut Alfredsen
Photo: Knut Alfredsen

Text HE

Sustainable use and management of our water resources  

The main objective of the hydraulic engineering group is to contribute to a better world by ensuring society's competence to preserve and utilize watercourses and water resources in an optimal and sustainable way. In this way, we will contribute to the green shift and to safeguard and develop the built environment in and in the vicinity to watercourses, in a way that ensures sustainability and security for society.

We do this through teaching and research in four main areas; Hydrology, Hydraulics, Eco-hydraulics and water resource management and Hydropower.

Hydrology covers the fields of hydrological modeling, flood hydrology, hydrology in hydropower planning and urban hydrology. The focus is on applications in planning and management.

Hydraulics encompasses hydraulic conditions in and in connection to watercourses and hydroelectric plants and covers areas such as erosion and sediment transport, hydraulic capacities and forces and modeling and simulation of water flow.

Eco Hydraulics and water resource management includes the physical environmental factors in the watercourses as well as the use and management of water resources. Knowledge of the effect of the factors through modeling and simulation is a central topic.

Hydropower includes hydropower planning, hydropower technology, economic optimization, dam technology and dam safety, as well as environmental analyzes. In an international perspective, hydropower and good water resource management are the most important contributions to sustainable resource management and clean renewable energy.

As part of bringing Norwegian hydropower expertise into the world and thereby making an important contribution to NTNU's vision, "knowledge for a better world", the hydraulic engineering group is responsible for the two-year International Master's program Hydropower Development. The subjects in the program form an important part of the group's teaching program.

The research group also runs one of Europe's largest hydraulic laboratories, the Norwegian Hydrotechnical Laboratory, where a large number of physical experiments on watercourses and hydropower plants have been and are carried out as part of a research project, a study project or as a commercial project.

The research group is leading one of nine projects in NTNU's strategic commitment to digital transformation. The World of Wild Waters project aims to contribute to better decisions to reduce the consequences of floods and natural hazards through visualization, extended reality (XR) and augmented Reality (AR) and "gamification".

Students interested in master's theses in watercourse technology find potential topics here Master's thesis in Water Resources Engineering

Research topics HT

Our department has been using and developing CFD models for hydraulic and sedimentation engineering since 1990. Initial work was focused on sediment problems with regards to hydropower intakes, primarily due to the difficulties of modelling fine sediment in physical models. Since then the scope of our CFD research has expanded to other hydraulic and environmental topics.


Computer Programs

Most of our CFD work has been carried out using the SSIIM program. The program is based on the solution of the Navier-Stokes equations on a non-orthogonal 2D or 3D grid. Both structured and unstructured grid versions are used. The SIMPLE method is used for computing the pressure and the the k-epsilon model is used to calculate turbulence. The sediment transport is calculated by solving the convection-diffusion equation for sediment concentration. Changes in bed elevation over time are computed, and algorithms for wetting and drying enables the prediction of lateral channel movements.

More information and download instructions for SSIIM




On-line books

We have made some CFD books publically available on the PDF format. A short description and download links are given below.

CFD class notes (593 kB)
"Computational Fluid Dynamics for Hydraulic and Sedimentation Engineering" was made for the CFD part in our class "Withdrawal of water from sediment-carrying rivers". The class notes provides a simple introduction to the basics of CFD. The latest version was made 16. June 1999.

User's manual for SSIIM (1.3 MB)
The user's manual for SSIIM provides standard information about the SSIIM program, like user interface, data format for input and result files etc. The latest version was made 31. May 2010.

Numerical modelling and hydraulics (1.7 MB)
The class notes for a course with the same name, given for the first time in the spring 2001. It is an undergraduate course in the 4th year of the Civil Engineering study at NTNU. This is the version from October 2009.

CFD Algorithms for Hydraulic Engineering (678 kB)
The book is a more detailed documentation of general and special hydraulic engineering CFD algorithms. It is intended to be used as a textbook for graduate courses in CFD, and also to provide assistance for people writing CFD codes. The present version is from 14. December 2000, and before this date it has not been checked by anyone but the author.

CFD for Hydraulic Structures (535 kB)
The book is about experiences using the SSIIM model to compute flow in/around hydraulic structures. The following cases are discussed: Vegetation, spillways, local scour and intakes. The present version is from 8. May 2001.



Several examples from our research are listed below. Much of the work has been carried out in cooperation with other institutions, so many of the examples are located on other web servers.
The numbers in brackets indicate size of graphics files in kB. The date indicate latest update.

Sediment transport


General hydraulics


Water quality


Habitat hydraulics


CFD links

Hydroelectric power is the technology of generating electric power from the movement of water through rivers, streams, and tides thanks to the potential energy of the elevation of waters. Water is fed via a channel to a turbine where it strikes the turbine blades and causes the shaft to rotate. To generate electricity the rotating shaft is connected to a generator which converts the motion of the shaft into electrical energy.

Hydroelectric power now supplies about 715,000 MW or 19% of world electricity and large dams are still being designed. Apart from a few countries with an abundance of it, hydro power is normally applied to peak-load demand, because it is so readily stopped and started. Nevertheless, hydroelectric power is probably not a major option for the future of energy production in the developed nations because most major sites within these nations with the potential for harnessing gravity in this way are either already being exploited or are unavailable for other reasons such as environmental considerations.

Hydroelectric power can be far less expensive than electricity generated from fossil fuel or nuclear energy. Areas with abundant hydroelectric power attract industry with low cost electricity. Recently, increased environmental concerns surrounding hydroelectric power, have begun to outweigh cheap electricity in some countries.

The chief advantage of hydroelectric dams is their ability to handle seasonal (as well as daily) high peak loads. When the electricity demands drop, the dam simply stores more water. Some electricity generators use water dams to store excess energy (often during the night), by using the electricity to pump water up into a basin. The electricity can be re-generated when demand increases. In practice the utilization of stored water in river dams is sometimes complicated by demands for irrigation which may occur out of phase with peak electrical demands.

Small hydro is the application of hydroelectric power on a commercial scale serving a small community or medium sized industry. A generating capacity of up to 10 MW is becoming generally accepted as the upper limit of what can be termed small hydro. Small hydro can be further subdivided into mini hydro, usually defined as less than 1,000 kW, and micro hydro which is less than 100 kW. Micro hydro is usually the application of hydroelectric power sized for small communities, single families or small enterprise.

Small scale hydro or micro-hydro power has been increasingly used as an alternative energy source, especially in remote areas other power sources are not viable. Small scale hydro power systems can be installed in small rivers or streams with little environmental effect on things such as fish migration.

There are some major factors to consider when installing a micro-hydro system. First, the amount of water flow available on a consistent basis. Periods of little or no rain can greatly affect power output. Second is what is known as head, this is the amount of drop the water has between the intake and the exit of the system. The more head, the larger amount of power can be generated. Third, there can be legal and regulatory issues that must be researched. Most counties, cities, and states have their own regulations about water rights and easements.

Norway has a very large hydropower potential and has developed it to great extend so that today hydropower covers over 99% of the electricity consumption of the country. Since most of the main sites have already been developed, the focus is now on the development of small hydropower plants. NVE (Norwegian Water Resources and Energy Directorate) has assessed the small hydropower potential and found that 18 TWh could be developed for less than 3 NOK/kWh. NVE estimates that 5 TWh out of 18 TWh could be developed within the next 10 years, which would be an increase of 4.5 % from today’s hydropower production. 5 TWh represent 1000 small hydropower plants with an installed capacity of 1 MW and an investment of 10 to 15 billions NOK.

Projects HE



HydroCen: Norwegian Research Centre for Hydropower Technology (new FME) 

WoWW: World of Wild Waters. A project in the digital transformation effort at NTNU

CEDREN - Centre for Environmental Design of Renewable Energy (FME, ending in 2017), including SafePass - Safe and efficient two-way migration for salmonids and European eel past hydropower structures (project beyond the FME period)

SFI Klima 2050 - Risk reduction through climate adaptation of buildings and infrastructure (cooperation with WWE group)

Hydralab+ - Adaptation for Climate Change 

FIThydro - Fish friendly Innovative Technologies for hydropower 

SediPass - Sustainable design and operation of hydro power plants exposed to high sediment yield 

TunnelRoughness - Linking physical wall roughness of unlined tunnels to hydraulic resistance

Visit the department research projects overview site here


Banner Hydrocen

Banner Cedren

klima 2050

Head of Research group

Head of Research group


Tor Haakon Bakken