TEP4320 - Engineering Energy Storage


New from the academic year 2024/2025

Examination arrangement

Examination arrangement: School exam
Grade: Letter grades

Evaluation Weighting Duration Grade deviation Examination aids
School exam 100/100 4 hours C

Course content

Thermal, mechanical, thermos-mechanical, chemical and electorchemical energy storage technologies and principles thereof. Ideal and real gases and the gas constants. Various chemical reactions, chemical equilibrium, and acids, bases and buffers. Electrochemical principles, reversible and standard potentials, electrochemical reactions and cell combinations. Galvanic cells and spontaneous electrochemical reactions. Electrolysis, fuel cells and batteries, as well as principles of corrosion and its kinetics. E-fuels.Electrochemical kinetics and modelling of these in operation. Efficicny and causes of these; ohmic, Butler-Volmer and forms of it, diffusionoverpotetnials and mass transport.

Learning outcome

Knowledge: Konsepts and operation of available and relevant energy storage technologies. - Comparisn tools applied in system evaluation. . various needs within energy storage. - The student has knowledge of ideal gases, partial pressures and volume calculations, as well as the gas constant. - The student knows the difference between a galvanic cell and an electrolytic cell and is familiar with the galvanic series.- The student can model electrochemical cells and derive and explain different sources of losses.

Skills: - The student can convert between equivalent units, such as volts and kWh/kg. - The student knows the difference between the reversible and the standard cell voltage and can calculate the cell potential for a cell through which a current flows. - The student has knowledge of electrochemical systems and processes and can recognize and explain the most important battery and fuel cell technologies on the market. - The student masters principles of corrosion and basic kinetics thereof.

General competence - The student can evaluate different forms of energy forms and their applications against each other. - The student is aware of which technologies dominates the field of energy storage, and can assess what kind of needs the individual technologies cover.

Learning methods and activities

Lectures, compulsory calculation exercises and demonatrations. 9 out of 12 calculation exercises must be approved before the student can take the exam. The lectures will be held in Trondheim and streamed or filmed and published consecutively after each lecture.

Compulsory assignments

  • Exercises

Further on evaluation

Examination arrangement: Written exam with a duration of 4 hours (digital) which constitutes 100 % of the assessment basis in the course. Grade: Letter A-F. Re-sit examination in August. The Re-sit examination may be changed from a written to an oral examination. 9 out of 12 calculation exercises must be approved before the student can take the exam. Permitted examination aids: Support material code C: Specified printed and hand-written support material is allowed. A specific basic calculator is allowed. Specified printed material: SI. chemical data aylward og Finley.

Course materials

"Engineering Energy Storage" Burheim, chapter 1- 8.

Lecture notes distributed via Blackboard.

SI chemical data, Aylward og Finley.

Credit reductions

Course code Reduction From To
FENT2011 5.0 AUTUMN 2024
FENG2011 5.0 AUTUMN 2024
FENA2011 5.0 AUTUMN 2024
FENT2314 2.5 AUTUMN 2024
FENG2314 2.5 AUTUMN 2024
FENA2314 2.5 AUTUMN 2024
TFNE3006 7.5 AUTUMN 2024
More on the course



Version: 1
Credits:  7.5 SP
Study level: Second degree level


Term no.: 1
Teaching semester:  SPRING 2025

Language of instruction: English, Norwegian

Location: Trondheim

Subject area(s)
  • Engineering Subjects
Contact information
Course coordinator: Lecturer(s):

Department with academic responsibility
Department of Energy and Process Engineering


Examination arrangement: School exam

Term Status code Evaluation Weighting Examination aids Date Time Examination system Room *
Spring ORD School exam 100/100 C INSPERA
Room Building Number of candidates
Summer UTS School exam 100/100 C INSPERA
Room Building Number of candidates
  • * The location (room) for a written examination is published 3 days before examination date. If more than one room is listed, you will find your room at Studentweb.

For more information regarding registration for examination and examination procedures, see "Innsida - Exams"

More on examinations at NTNU