Materials Modelling

Density functional theory (DFT) modelling of the electronic structure from first principles has become an invaluable tool for predicting the properties of materials with a resolution in space and energy inaccessible to experimental techniques. DFT calculations are also most useful for interpreting complex experimental data. Our DFT activity focuses on the modelling of materials with complex crystal structure and defect chemistry, and on interfaces like epitaxial interfaces, surfaces and ferroic domain walls. The interaction between point defects and internal interfaces is very challenging to study experimentally, and lies at the core of our DFT activity. We study the energetics and lattice dynamics of ferroic oxides and their point defects, the electronic structure and mass transport properties of transition metal oxides and graphite intercalation compounds We also work on novel materials for solar cells and aluminium electrolysis cathodes. In addition, we perform finite element method (FEM) macroscopic modelling of electrolysis cells and membrane materials. With the addition of assoc. prof. Sondre K. Schnell to our research group molecular dynamics simulations will become an increasing part of our modelling activity.

The main activities include:

  • Point defects and domain walls in multiferroic oxides. Contact: Sverre M. Selbach.
  • Vacancy formation and transport in epitaxially strained thin films of ferroic oxides. Contact: Sverre M. Selbach.
  • Cation ordering and transport in tetragonal tungsten bronzes. Contact: Sverre M. Selbach and Tor Grande.
  • Oxide materials for intermediate band solar cells. Contact: Fride Vullum-Bruer and Sverre M. Selbach.
  • Molecular dynamics simulations of nanoscale thermodynamics and transport processes. Contact: Sondre K. Schnell.
  • Finite element modelling of transport processes in aluminium electrolysis cells. Contact: Zhaohui Wang.
  • Energetics and transport processes in graphite intercalation compounds. Contact: Zhaohui Wang and Sverre M. Selbach.
  • Ferroic properties of epitaxially strained 111 thin films. Contact: Sverre M. Selbach.

Electron lofcalization function (ELF) calculated by van der Waals density functional theory for stoichiometric MoO3 and with a charged and neutral cell. From Inzani et al., J. Phys. Chem. C 120 (2016) 8959.

Relevant publications:

S. H. Skjærvø, E. T. Wefring, S. K. Nesdal, N. H. Gaukås, G. H. Olsen, J. Glaum, T. Tybell and S. M. Selbach
Interstitial Oxygen as a Source of p-type Conductivity in Hexagonal Manganites
Nature Commun. 7 (2016) 13745.

I. Hallsteinsen, M. Moreau, A. Grutter, M. Nord, P-E. Vullum, D. A. Gilbert, T. Bolstad, J. K. Grepstad, R. Holmestad, S. M. Selbach, A. T. N’Diaye, B. J. Kirby, E. Arenholz and T. Tybell
Concurrent magnetic and structural reconstructions at the interface of (111)-oriented La0.7Sr0.3MnO3/LaFeO3
Phys. Rev. B 94 (2016) 201115(R).

A. Marthinsen, C. Faber, U. Aschauer, N. A. Spaldin and S. M. Selbach
Coupling and competition between ferroelectricity, magnetism, strain and oxygen vacancies in AMnO3 perovskites
MRS Commun. 6 (2016) 182-191 and arXiv:1606.05165

A. Bergerud, S. M. Selbach and D. J. Milliron
Oxygen Incorporation and Release in Metastable Bixbyite V2O3 Nanocrystals
ACS Nano 10 (2016) 6147-6155.

E. L. Runnerstrom, A. Bergerud, A. Agrawal, R. W. Johns, C. J. Dahlman, A. Singh, S. M. Selbach and D. J. Milliron
Defect engineering in plasmonic metal oxide nanocrystals
Nano Lett. 16 (2016) 3390-3398.

G. H. Olsen, U. Aschauer, N. A. Spaldin, S. M. Selbach and T. Grande
Origin of ferroelectric polarization in tetragonal tungsten-bronze-type oxides
Phys. Rev. B 93 (2016) 180101(R).

K. Inzani, T. Grande, F. Vullum-Bruer and S. M. Selbach
A van der Waals Density Functional Study of MoO3 and Its Oxygen Vacancies
J. Phys. Chem. C 120 (2016) 8959-8968.

G. H. Olsen, S. M. Selbach and T. Grande
On the energetics of cation ordering in tungsten-bronze-type oxides
Phys. Chem. Chem. Phys. 17 (2015) 30343-30351.

Zh. Wang, A. P. Ratvik, T. Grande and S. M. Selbach.
Diffusion of Alkali Metals in the First Stage Graphite Intercalation Compounds by vdW-DFT Calculations
RSC Adv. 5 (2015) 15985-15992.

M. Nord, P.E. Vullum, M. Moreau, J.E. Boschker, S.M. Selbach, R. Holmestad and T. Tybell
Structural phases driven by oxygen vacancies at the La0.7Sr0.3MnO3/SrTiO3 hetero-interface
Appl. Phys. Lett. 106 (2015) 041604.

G. H. Olsen, M. H. Sørby, B. C. Hauback, S. M. Selbach and T. Grande
Revisiting the crystal structure of rhombohedral lead metaniobate
Inorg. Chem. 53 (2014) 9715-9721.

Zh. Wang, S. M. Selbach and T. Grande.
Van der Waals density functional study of the energetics of alkali metal intercalation in graphite
RSC Adv. 4 (2014) 4069 - 4079. PDF

U. Aschauer, R. Pfenninger, S. M. Selbach, T. Grande and N. A. Spaldin
Strain-controlled oxygen vacancy formation and ordering in CaMnO3
Phys. Rev. B 88 (2013) 054111.

I. MacLaren, L. Q. Wang, B. Schaffer, Q. M. Ramasse, A. J. Craven, S. M. Selbach, N. A. Spaldin, S. Miao, K. Kalantari and I. M. Reaney
Novel Nanorod Precipitate Formation in Neodymium and Titanium Codoped Bismuth Ferrite
Adv. Funct. Mater. 23 (2013) 683.

About us

Contact persons:

Professor Mari-Ann Einarsrud
Phone: +47 73 59 40 02

Professor Tor Grande
Phone: +47 73 59 40 84

Professor Kjell Wiik
Phone: +47 73 59 40 82

Assoc. Prof. Hilde Lea Lein
Phone: +47 73 55 08 80

 Assoc. Prof. Fride Vullum-Bruer
Phone: +47 73 59 39 76

Assoc. Prof. Sverre M. Selbach
Phone: +47 73 59 40 99

Assoc. Prof. Maria Benelmekki
Phone: +47 73 59 40 05

Assoc. Prof. Dennis Meier
Phone: +47 73 59 40 47


Assoc. Prof. Sondre K. Schnell
Phone: +47 45 27 54 63

Visiting address:
Sem Sælandsvei 12

Postal address:
Inorganic Chemistry and Ceramics Research Group
att: Mari-Ann Einarsrud
Department of Materials Science and Engineering