A PETROMAKS 2 Project

Durable Arctic Icephobic Materials (AIM)

The primary objective of the AIM project is to develop and test bio-inspired robust icephobic materials which can survive multiple harsh environmental cycles and impacts. The secondary objectives are to enhance the fundamental understanding of the icephobic mechanisms by nanotechnology; to develop reliable test methods for Arctic icephobic materials with special focus on mechanical resilience and transferability of laboratory to real Arctic environments; educate one PhD in the field of Arctic icephobic materials and lay down a foundation for future industry oriented research activities for establishing material guidelines for Arctic exploration and operation.


2018-03-17

New article in ACS Applied Materials & Interfaces by PhD candidatet Yizhi Zhuo

– Zhuo, Yizhi; Håkonsen, Verner; He, Zhiwei; Xiao, Senbo; He, Jianying; Zhang, Zhiliang

Icephobic surfaces are crucial to all cold-condition applications, ranging from nano to macro scales. The study presented in this manuscript focuses on enabling new functionality, namely self-healing, in passive icephobic surfaces. The aim of the work is to improve the common durability issue of all the state-of-the-art icephobic surfaces. Here, we designed and fabricated a novel icephobic material by integrating interpenetrating polymer network (IPN) into autonomous self-healing elastomer. The material showed great potentials in anti-icing applications with an ultralow ice adhesion and long-term durability. Most importantly, the material was able to demonstrate self-healing from mechanical damages in a sufficiently short time, which shed light on the longevity of icephobic surface in practical applications. Moreover, we studied the creep behaviours of the elastomer that were absent in most relevant studies on self-healing materials. We also provided molecular mechanisms of the self-healing and creep resistance of the IPN in the manuscript.


2017-02-07

What are the Common Room Temperature Characteristics of Low Ice Adhesion Surfaces?

New paper published in Scientific Reports.

Our results show that low ice adhesion strength does not correlate well with water contact angle and its variants, surface roughness and hardness. Low elastic modulus does not guarantee low ice adhesion, however, surfaces with low ice adhesion always show low elastic modulus. Low ice adhesion (below 60 kPa) of commercial surfaces uniquely associates with small water adhesion force.


2015-11-02

Inverse Hall-Petch and Hall-Petch Behaviour First Time Found for Gas Hydrates

– Jianyang Wu, Fulong Ning, Thuat T. Trinh, Signe Kjelstrup, Thijs J.H. Vlugt, Jianying He, Bjørn H. Skallerud and Zhiliang Zhang*.

    


Sediment-hosted gas hydrates have profound impacts on global energy sources and climate change. Their mechanical properties play a crucial role in gas recovery and understanding their evolution in nature, however, the deformation mechanisms of gas hydrates have not yet been elucidated owing to the difficulties in experimental measurements. Here we report direct molecular dynamics simulations of the material instability of monocrystalline and polycrystalline methane hydrates under mechanical loading. The results show dislocation-free brittle failure in monocrystalline hydrates and an unexpected ductile ultimate strength as a result of crossover from grain-size strengthening to weakening in polycrystals. Upon uniaxial depressurization, strain-induced hydrate dissociation accompanied by grain-boundary decohesion and sliding destabilizes the polycrystals. In contrast, upon compression, appreciable solid-state structural transformation dominates the response. These findings provide molecular insights into the destabilization mechanisms of gas hydrates caused by deformation beyond the conventionally thermodynamic instability.


AIM in Norwegian

Arktiske områder er langt fra eksisterende infrastruktur, og har sårbare økosystemer. Is-opphopning på utsatte overflater kan føre til ødeleggende konsekvenser, fra forverret effektivitet av energisystemer, påvirkning av sikkerheten til transportfartøy, til å kritisk begrense arktiske aktiviteter. Hindre tilvekst av is på noen strategisk valgte åpne flater er spesielt viktig for å sikre trygg og effektiv drift av de arktiske undersøkelsene, og det er enorm etterspørsel på kraftige anti-isingsmetoder. Utvikling og implementering av passive isfobiske belegg er en foretrukken strategi. Imidlertid er isfobisitet fortsatt et veldig ungt forskningsfelt over hele verden. Ytelsen til isfobiske materialer avhenger sterkt av miljøforholdene, og deres applikasjoner til de arktiske forholdene er ennå ikke utforsket. Nanostrukturerte materialer har stadig økende betydning i anti-isingsapplikasjoner på grunn av deres evne til å kontrollere hierarkiske ruhetsnivåer. En av flaskehalsene i distribusjon av dagens anti-isingsmaterialer for arktiske applikasjoner, er deres korte levetid. Det primære målet med AIM-prosjektet er å utvikle og teste bio-inspirerte robuste isfobiske materialer som kan overleve flere tøffe miljøsykluser og virkninger; å etablere pålitelige testmetoder for arktiske isfobiske materialer med spesielt fokus på mekanisk pålitelighet, og overførbarhet fra laboratorieskala til reelle arktiske miljøer, og å legge ned grunnlaget for fremtidige industrirettede forskningsaktiviteter for å etablere materialretningslinjer for arktisk utforskning og drift.


AIM info

Duration: 2016-2020

Funding: 9.3 mKr by the Research Council of Norway via the PETROMAKS 2 Program 


AIM members

Prof. Zhiliang Zhang, NTNU
Project leader



Bård Nyhus
Senior Research Scientist
SINTEF Materials and Chemistry
 
Yizhi Zhuo
PhD student
Nanomechanics

AIM Partners